Calculus for Olympiad Problems?

0 Introduction

To some extent, I regard this note, as should you, as analogous to sex education in school.
It doesn’t condone or encourage you to use calculus on Olympiad inequalities. However,
it rather seeks to ensure that if you insist on using calculus, that you do so properly. =)

Having made that disclaimer, let me turn around and praise calculus as a wondertul
discovery that immeasurably improves our understanding of real-valued functions. If you
haven’t encountered calculus yet in school, this section will be a taste of what awaits you
but no more than that. The treatment is far too compressed to give a comprehensive
exposition. After all, isn’t that what textbooks are for.

1 Continuous Functions

1.1 Continuity

What are continuous functions? You could probably say that if you draw a graph of a
continuous function, there will be no ’irregular’ breaks, or you could draw it in one smooth
motion - all these seem to convey a notion related to the word continuous. Although this
is not altogether correct, it puts us on the right track and it is often helpful to visualize
continuous functions in this way.

One of the purposes of this note will be to show that continuous functions are not quite
as simple as our initial intuitive feelings might lead us to believe; in fact, most continuous
functions, have graphs which, though unbroken and connected, are not smooth at all. The
depth of this remark can be illuminated by pointing out that of the continuous functions
only the simplest and most well-behaved can be graphed at all.

Nevertheless, continuity is an extremely important concept in mathematics and mathe-
matics application and will occupy a central role in the remainder of this note. We begin
with the definition of continuity of a function at a point in its domain.

Definition 1.1 f is said to be continuous at xg if limy_, f(x) = f(xo); equivalently,
given any ¢ > 0, there exists a 6 > 0 such that |f(x) — f(xo)| < € whenever |x — xg| < 6.

Example 1.1
1. fi(z) = 2® +192* + 992 + 1 is continuous on R.

2. fa(x) = lj%; is discontinuous at ¥ = 2 since f(2) does not exists.

3. fs(x) = { ign|x| Zi 7: 8 is continuous on R.

Definition 1.2 f is said to be right continuous (or continuous from the right) at xo if
liml,_m,sr f(x) = f(xo); similarly, f is left continuous (continuous from the left) at xq if

lim, .~ f(z) = f(zo).

In order for f to be right-continuous at xq, it is necessary that f be defined on an interval
of the form [xg, g+ n) for some 5 > 0. In f is left-continuous at g then f must be defined
on (xg — n,x0) for some n > 0. Also, f is continuous if and only if f is both left- and
right-continuous at .



Example 1.2

1. g1(x) = |x| is continuous on R.
2. go(x) = || is discontinuous at every integer and is continuous at all other real numbers.

Theorem 1.1 If f and ¢ are each continuous at x = xq, then f + g, f - g are continuous
at o and g is continuous at xg provided g(xo) # 0.

Theorem 1.2 [f f is continuous alt x = xo, and g is continuous at f(xo) then (go f)(x) =
g(f(x)) is continuous at x.

1.2 Properties of Continuous Functions

Definition 1.3 A function [ : A — B is called bounded if there exists a real number
M > 0 such that |f(x)| < M for every x € A.

In this section, we investigate some important properties of continuous functions. The
functions f(z) = @ on R and f(x) = % on (0,1) are not bounded. Yet each of these
function is continuous on the given domain. Our first result is that if a function f is
continuous on a closed bounded interval [a, ], then f is necessarily bounded on [a, b].

Theorem 1.3 If f is continuous on the closed, bounded interval [a,b], then f is bounded
on [a,b].

Recall that each polynomial function is bounded on every bounded interval I, and hence
continuous functions on R are like polynomials in this way. Of course, the polynomials are
only a small subset of the set of all continuous functions on R.

Suppose the function f is bounded on the set A; and define

M =sup,c,f(z) and m = infoea f(x).

Example 1.3

1. Let fi(z) = a? on (0,2). [ is continuous and bounded on (0,2). M =4 and m = 0,
but there are no points x1,x9 € (0,2) with f(x1) =4 and f(xq) = 0.

2. Let fr(x) = (lﬂiL) on K. Note that f(x) is an odd function; f(x) is continuous and
bounded on R, M =1 and m = —1, but there are no points x1,x9 € R with f(x1) =1 and

fwz) = —1.

In these two examples, the extreme values of the function f, M and m, are not always
assumed by the function. The following important theorem gives us conditions under
which the extreme values are necessarily assumed.

Theorem 1.4 (Extreme Value Theorem) If f is continuous on [a,b], then there exists
points x1,x9 € [a,b] such that f(xy) < f(a) < f(ay) for all x € [a,b].

Proof Suppose that f is continuos on [a,b]; then f is bounded on [a,b], and so M =
SUP,epayf (%) and m = infyep, ) f(2) exist as real numbers. Suppose that the value M
is not assumed; then f(x) < M for every x € [a,b]. Define g(x) = M_lf(l,)
clearly g(x) > 0 for every = € [a,b] and by Theorem 1.1, ¢ is continuous on [a,b]. Then

on [a,bl;

by Theorem 1.3, ¢ is bounded on [a,b], and so there is a real number k& > 0 such that
g(x) < k for every = € [a,b]. Now, for every = € [a, ],
1

kzg(l’):m
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and so M — f(x) > 1/k > 0. Hence f(x) < M — 1/k on [a,b], and this contradicts the
definition of M as the least upper bound of f on [a,b]. Therefore, the value M must be
assumed. To prove the existence of an 23 € [a,b] with f(x2) = m, we can apply the same
argument to the function — f.

Theorem 1.5 (Intermediate Value Theorem) If f is continuous on [a,b] and k is between
fla) and f(b) then there exists ¢ € (a,b) such that f(c) = k.

Theorem 1.6 If f is one-to-one and continuous on [a,b], then f is strictly monotone on

Ja,b].

2 Differentiable Functions

2.1 The Derivative

In this section, we study the derivative of a function and the properties of differentiable
functions. The reader may recall from elementary calculus that the derivative of a function
f is a new function f” which represents the rate of change of f as = changes. It therefore
has applications in any discipline where change is measured. We first assume that f is
defined in a neighbourhood of zy.

Definition 2.1 The derivative of [ at xq is

, L flzo+h) — flxo)
f'(xo) = lim Y

—0

provided the limit exists. When the limit exists, we say that f is differentiable at xo.

The fraction on the right-hand side of the equation is also known as the difference quotient.
An equivalent definition for the derivative of f(x) at x¢ is

r—x0 T — To

Theorem 2.1 If f is differentiable at xq, then [ is continuous at xg.

Proof Recall that f is continuous at xq if lim,_., f(2) = f(x0), or equivalently lim,_,, f(z)—
f(z0) = 0. We assume that f is differentiable at xq, then

Jim f(r) = flwo) = lim S o)
_ Q}LI?O f(:li:l); : i(l'o) whj?o(x o l’o)

= f/(l’o) . 0 = 0

We assume that the reader is familiar with the geometrical interpretation of the derivative
f'(x0) as the slope of the line tangent to the graph of y = f(x) at the point (x, f(xo)).
We also assume familiarity with the differentiation of polynomials and the basic rules of
differentiation:

L (f+9)(z)=f'(z)+g(x)

2. (kfY(2) = kf(a)

3. (fg)'(x) = ["(x)g(x) + [(z)g'(x)

4 (fl9)(x) = [g(x)["(x) = f(x)g'(x)]/lg(x)]?

whenever the right-hand sides of the equations exist.

Theorem 2.2 [f [ is differentiable at xo and g is differentiable at yo = f(x0) then h = gof
is differentiable at x¢ and

h(zo) = (g0 f)(x0) = ¢'[f(x0)] - f'(x0) = ¢'(y0) - ['(20).



2.2 Properties of Differentiable Functions

In this section, we study some important properties of differentiable functions; in partic-
ular, we shall be concerned with the relationship between f and f’. We say that f is
differentiable on the set A if f is differentiable at each point in A.

We begin by investigating maxima and minima of a function f and see how they are re-
lated to f’. Such considerations are extremely important in the various applications.

Definition 2.2 f(x¢) s a local maximum of the function f if for all ¥ in some neigh-
bourhood of o we have f(x) < f(xo). Similarly, f(x¢) is a local minimum of the
function f if for all x in some neighbourhood of xo we have f(x) > f(xo).

Definition 2.3 Let x¢ be an element in the interval I. f(xo) is the absolute maximum
of fon I if f(wo) > fx) for all x € I. Similarly, f(xo) is the absolute minimum of f
on I if f(xo) < f(a) forallx € 1.

It is clear from the above definitions that if xq is an interior point of the interval I, and
f(x0) is the absolute maximum of f(x) on I then f(x¢) is a local maximum of f. A similar
statement holds for minima.

Theorem 2.3 [f f(xq) is a local extremum (mazimum or minimum) then either f'(x9) =0
or f'(xo) does not exist.

Proof Suppose f(x¢) is a local maximum (a similar proof holds for the case when f(x¢)
is a local minimum). Then there is a 6 > 0 such that for every @ € Ng(xo), f(x) < f(xo).
Hence

J(x) = flzo) { <0 if x satisfies g < @ < 29+ 6

T — T >0 if x satisfies 1g — 6 < & < 29

Now if f'(xg) exists, then necessarily,

fz) = J(wo)

I _ _
xig})l' T — Xy f (xO) xir;i_ r — X

But by the above,
lim —f(x) — fo) <0 and lim —f(x) — f(zo) >0

x—mjal- T — Xy g;—m;o_ r — X
It follows that f'(x0) = 0.

The function f(x) = |z| provides an example of a function which has a local extremum at
a point where the function fails to be differentiable.

Theorem 2.4 (Rolle’s Theorem) If f(x) is continuous on [a,b], and differentiable on
(a,b) and f(a) = f(b) then there exists an x¢ € (a,b) such that f'(xo) = 0.

Theorem 2.5 (Mean-Value Theorem) If f is continuous on [a,b] and differentiable on
(a,b), then there exists a point xg € (a,b) such that

f(h) ~ f(a)

J'(x0) = b—a



The following theorem, which is our first application of the mean-value theorem, is usetul
in many ways.

Theorem 2.6 [f [ is differentiable on (a,b) and f'(x) > 0 for every x € (a,b), then f is

monotone increasing on (a,b).

Proof Suppose x1,22 € (a,b) with @1 < x2. Then f is continuous on [x1,x3] and is
differentiable on (&1, 23). By the Mean Value Theorem, there is an xg, with x; < 29 < 22

such that
f(a2) = flz1)

f/(ilio) B Ty — I

Since x9 — w1 > 0 and f'(x¢) > 0 by hypothesis, it follows that f(x1) < f(x2), hence f is
monotone increasing on (a,b). A similar results holds when f’(2) < 0 on an interval (a, b).
So for example, to find the extrema of a continuous function on a closed interval, it suffices
to evaluate it at

1 all points where the derivative vanishes,
2 all points where the derivative is not defined,
3 the endpoints of the interval.

since we know the function has global minima and maxima, and each of these must occur
at one of the aforementioned points. If the interval is open or in infinite at either end, one
must also check the limiting behavior of the function there.

2.3 Convexity and the Second Derivative

A function f defined on an interval (which may be open, closed or infinite on either end),
is said to be convex if the set

{(z,y) € R* 1y = f(2)}

is convex. We say t is concave if -f is convex. This terminology was standard at one time,
but today most calculus textbooks use ”concave up” and ”concave down” for our ”convex”
and ”concave”.

A more enlightening way to state the definition might be that f is convex if for any ¢ €
[0, 1] and any x,y in the domain of f, we have

tfx)+ (L= f(y) > flte+ (1 —t)y)

It f is continuous, it suffices to check this for ¢t = % Conversely, a convex function is
automatically continuous except possibly at the endpoints of the interval on which it is

defined.

Theorem 2.7 If f is a convex function, then the following statements hold:

1 Ifa <b<c<d then {2210 < JOZT0)
(The slope of secant lines through the graph of f increase with either endpoint.)

2. If f is differentiable everywhere, then its derivative (that is, the slope of the tangent line
to the graph of f is an increasing function.)



The utility of convexity for proving inequalities comes from two factors. The first factor is
Jensen’s inequality, which one may regard as a formal statement of the smoothing principle
for convex functions.

Theorem 2.8 (Jensen’s Inequality) Let f be a convex function on an interval I and let
W1, ..., w, be nonnegative real numbers whose sum is 1. Then for all x1,...,x, € I,

wif(ar) + oo Fwu fa,) > flwrer + .o+ wpay).

Proof An easy induction on n. The case n = 2 being the second definition above.

The second factor is the ease with which convexity can be checked using calculus, namely
via the second derivative test.

Theorem 2.9 Let f be a twice differentiable function on an open interval 1. Then f is
convex on I if and only if f"(x) >0 for all x € I.

3 Differentiable Functions of Several Variables

3.1 Partial Derivatives and Differentials

The partial derivative of f(x,y) with respect to = at (o, yo) is
af df (x,yo)

%|(1’07y0) - T|1’21’0
~ lim J(xo + h,yo) — flo, ?Jo)7
h—0 h

provided the limit exists. Note that f(x,yo) is a function of = only, since yo is a fixed
number. Likewise, The partial derivative of f(x,y) with respect to y at (xo,y0) is

af df (xo,y)

%“l’myo) - dy |Z/=y0
k) —
_ i [(E0 %0+ E) f(?f?oa?JO)7
k—0 k
Other notations commonly used (depending on the emphasis) are: fo, U =, fys ax, ete.

Example 3.1 Given f(z,y) = 2> +3vy +y — 1, compute f, and f, at (4,-5).

Solution f, = 22 4+ 3y, f, = 32 4+ 1. Thus, at (4,-5), fo = 2(4) + 3(=5) = —T,
f,=3(4)+1=13.

3.2 Higher Derivatives

Since the partial derivatives of f(x,y) are themselves functions of « and y; they may in turn
be (partially) differentiated. This produces partial derivatives of order 2; (second(-order)
partial derivatives.) There are four of them, and the usual notation is:

af* 0 f? 01> 0f>
9ar O Gady O e Guan O e gy O Jr

Here, notice the order

8f2 af



Theorem 3.1 (Fuler) If f(x,y) and its partial derivatives fy, f,, fzy and fy. are defined

throughout an open region containing the point (a,b) and are all continuous at (a,b), then

fxy(avb) = fyl’(av b)

As with second-order derivatives, the order of differentiation is immaterial as long as the
function and its derivatives through the order in question are all defined throughout an
open region containing the point at which the derivatives are taken and are continuous at
that point.

Theorem 3.2 Suppose that the first partial derivatives of f(x,y) are defined throughout
an open region R containing the point (xq,yo) and that f, and f, are continuous at (xq,yo).
Then the change

Az = f(xo+ Az,yo0 + Ay) — f(x0,y0)

in the value of f that results from moving from (xo,yo) to (vo+ Ax,yo+ Ay) in R satisfies
Az = fx(J;Ov ?Jo)Al' + fy(xov yo)A?J + gle + €2Ay (1)
where £1,65 — 0 as Az, Ay — 0.

Definition 3.1 A function f(x,y) is differentiable (totally, for emphasis) at (xo,y0) if
fo(xo,y0) and fy(xo,y0) exist and the above relation (1) holds for f at (xo,yo). We simply
call f differentiable if it is differentiable at every point in its domain.

Theorem 3.3 (Analogue to Theorem 2.1) If a function f(x,y) is differentiable at (xo,y0),
then it is continuous at (xo,¥yo).

4 Extreme Values and Saddle Points

To determine maxima, minima or saddle points of a continuous function f(x,y) on a region
R in the zy-plane, we follow the following procedure:

Step 1 Make a list that includes the points where f has its local maxima and minima and
evaluate f at all points on the list. The local maxima and minima of f can occur only at
(i) boundary points of R;

(ii) interior points of R where f, = 0 = f, and the points where f, or f, fail to exist.

Step 2 If R is closed and bounded, look through the list for the maximum and minimum
values of f; These will be the absolute maximum and minimum values of f on R.

Step 3 If R is not closed or not bounded, try the following second derivative test. (The
fact that f, = 0 = f, at an interior point (a,b) of R does not guarantee that f will have
an extreme value there.) However, if f and its first and second partial derivatives are
continuous on R; the following test may identify the behaviour of f(a,b) :

If fo(a,b) =0 = f,(a,b), then

(i) f has a local maximum at (a,b) if fo, <0 and fo.f,, — f2, > 0 at (a,b).

(ii) f has a local minimum at (a,b) if fo, > 0 and fo.fy, — f2, > 0 at (a,b).

(iii) f has a saddle point at (a,b) if fo. fyy — f7, <0 at (a,b).

The test is inconclusive if if f,, f,, — zy =0 at (a,b), and we must find some other way

to determine the behaviour of f at (a,b).

The expression fi, fyy — fzy is called the discriminant of f.
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Example 4.1 Find the extreme values of f(x,y) = 2? + y*.

Solution The domain of f is the entire plane with no boundary points. The derivatives
Jf» = 22 and f, = 2y exist everywhere. Thus local max or min occur only when f, =0 = f;
i.e., at the origin (0,0). Since f(0,0) = 0 and f(x,y) > 0; 0 is the absolute min. (Here
we did not need second derivative test, had we used it, we would have identified (0,0) as
a local min.)

Example 4.2 Find the extreme values of f(x,y) = xy.

Solution Since f is differentiable everywhere and its domain has no boundary points, f
can assume extreme values only where f, = 0 = f,. We have f, = y and f, = z; thus
at (0,0) f may assume an extreme value. Now f,, =0, f,, = 0 and f,, = 1 which give
Jeafyy—f2, = —1 < 0at (0,0). Hence f has a saddle point at (0,0), it assumes no extreme
values.

Example 4.3 Find the extreme values of f(x,y) = ay — 2? —y* — 20 — 2y + 4.

Solution [ is defined and differentiable for all z,y and its domain has no boundary
points. The extreme values therefore occur only at points where f, =0 = f,.
fo=y—20-2 f,=2—2y—2 and f, = f, =0ifand only if y = 20+ 2 and = = 2y 4 2,
that is if and only if @ =y = —2. Thus at (-2, -2) f may assume an extreme value. Now
foe = =2, fyy = =2, foy = fys = 1, therefore f,. f,, — fgy =3 > 0and f,,; < 0implies that
(-2, -2) is a maxima.

Hence the maximum value of f is given by f(—-2,-2)=4—-4—-4+44+4+4=28.

5 Lagrange Multipliers

5.1 Tangents and Normals to Surfaces

When a cartesian coordinate system is given, a curve ' may be represented by a vector
function

(1) =< a(),y(1). 2(1) >= e(1)i + (0 + =(1)k,

where  is a real variable. Each value of ¢ corresponds to a point r(tg) =< x(to), y(t0), 2(to) >
of C'. Such a representation is called a parametric representation of (', and ¢ is called the
parameter.

The tangent to a curve C' at a point P of C is the limiting position of the line PQ), @
being another point on C, as ) — P along C. Let C' be given by r(¢) with P and @
corresponding to ¢ and ¢ + At respectively. Then the vector é(r(t + At) —r(1)) gives the
direction of P(). Assume that r is differentiable, then

, 1
r = lzmm_}og(r(t + At) —r(t))

is a tangent vector of C' at P.

Let f(x,y,2) = ¢, ¢ constant, be a surface S in space, and let a curve C given by r(?) lie
on S. Then f(x(t),y(t),z(t)) = c. Differentiating this with respect to ¢ we get

df . dx dy

dz

a =Y



de dy d
or < fo, fy, fo > <G T >=V[-r'(t)=0.

This implies that V f and 1'(¢) are perpendicular to each other. Since r'(#) is in the tangent
plane, V f is the normal vector of S at a given point P.

Let Po(wo, Yo, 20) be a point on the level surface f(x,y,z) = ¢. Since Vf =< fo, fy. f- > |n,
is normal to the surface at Fp, the tangent plane to the surface at Fy is given by

fe(Po)(z — x0) + f,(Fo)(y — yo) + f-(Fo)(z — 20) = 0,

and the normal line of the surface at P is the line

= x0+ fo(Po)tsy = yo+ fy(FPo)ls 2 = 20 + f.(Fo)t.

5.2 Constrained Maxima and Minima

We sometimes need to find the extreme values of a function whose domain is constrained
to lie within some particular subset of the plane. This usually consists mostly of interior
points, e.g. a closed disk or closed triangular region. But a function may be subject to
other kinds of constraints as well.

In this section, we explore a powerful method for finding extreme values of constrained
functions: the method of Lagrange multipliers, developed by Lagrange in 1755 to solve
maximum-minimum problems in geometry.

Attempts to solve a constrained maximum or minimum problem by substitution, do not
always go smoothly. This is one of the reasons for learning the new method of this section.

Example 5.1 Find the points closest to the origin on the hyperbolic cylinder x? —2* —1 =
0.

Solution 1 Substitute z? = 2* — 1 in the function (distance squared)
F(:L',y,z) = x2 + y2 + 227

we get the function h(z,y) = 2? + y? + (2* — 1) = 22 4+ y* — 1. This has minimum -1 (!)
at (x,y) = (0,0). What has gone wrong?

Ans: The constraint of points on the surface restricts the values of (x,y), which cannot be
(0, 0).

Solution 2 Another way to find the points on the constraint surface (cylinder) closest
to the origin is to imagine a small sphere centered at the origin expanding like a soap
bubble until it just touches the cylinder. At each point of contact, the cylinder and sphere
have the same tangent plane and normal line. Therefore, if the sphere and cylinder are
represented as the level surfaces obtained by setting

fla,y,z) =a?+y*+ 22 —d°

and
gla,y,z) = 2% = 2" —1

equal to 0. Then the gradients V f and Vg will be parallel where the surfaces touch. (The
use of the —a® term is not exactly necessary; we may use the level curve F(x,y,z) = a*)
At any point of contact we should therefore be able to find a scalar A such that

Vf=AVyg



or

2x1 4 2yj + 22k = A(2x1 — 2zk).

Thus, the coordinates z,y and z of any point of tangency will have to satisfy the three

scalar equations:
20 = 2Ax; 2y = 0;2z = —2Az.

Now 2% — z? = 1 implies @ # 0, and this would imply that A = 1, and hence z = 0. Since
y = 0, the points we seek all have coordinates of the form (z,0,0). But from z* — 2* =1,
we have 22 =1 or x = £1.

The points on the cylinder closest to the origin are the points (41,0,0).

6 The Method of Lagrange Multipliers

In solution 2 of the previous Example, we solved the problem by the method of Lagrange
multipliers. In general, the method says that the extreme values of a function f(x,y,2)
whose variables are subject to a constraint g(x,y,z) = 0 are to be found on the surface
g = 0 at the points where Vf = AVg for some scalar A (called a Lagrange Multiplier). To
explore the method further and see why it works, we first make the following observation,
which we state as a theorem.

Theorem 6.1 (Orthogonal Gradient Theorem) Suppose that f(x,y,z) is differentiable in
a region whose interior contains a smooth curve C :r = g(t)i + h(1)j + k(H)k. If Py is a
point on C where f has a local maximum or minimum relative to its values on C'; then
V [ is orthogonal to C at Fy.

The Theorem above is the key to the method of Lagrange multipliers. Suppose that
flz,y,2) and g(x,y, z) are differentiable and that Fy is a point on the surface g(x,y,z) =0
where f has a local maximum or minimum value relative to its other values on the surface.
Then f takes on a local maximum or minimum at Py relative to its values on every dif-
ferentiable curve through Py on the surface g(x,y,z) = 0. Therefore, V f is orthogonal to
the velocity vector of every such differentiable curve through Fy. But so is Vg (since Vg is
orthogonal to the level surface ¢ = 0). Therefore, at Py, V f is some scalar multiple A of Vg.

The Procedure in The Method

Suppose that f(x,y,z) and g(z,y,z) are differentiable. To find the local maximum and
minimum values of f subject to the constraint g(z,y,z) = 0, find the values of x,y, z and
A that simultaneously satisfy the equations Vf = AVg and ¢(z,y,z) = 0. For functions
of two independent variables, the appropriate equations are Vf = AVg and g(x,y) = 0.

Example 6.1 Find the greatest and smallest values that the function f(x,y) = xy takes

on the ellipse
1 1

2 2
8:1; + 2y = 1.

The Geometry of the Solution: The level curves of the function f(x,y) = xy are the
hyperbolas xy = ¢. The farther the hyperbolas lie from the origin, the larger the absolute
value of f. We want to find the extreme values of f(x,y), given that the point (x,y) also
lies on the ellipse 2% + 4y* = 8. Which hyperbolas intersecting the ellipse lie farthest from
the origin? The hyperbolas that just graze the ellipse, the ones that are tangent to it. At
these points, any vector normal to the hyperbola is normal to the ellipse, so Vf = yi+ ]
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is a multiple (A = +2) of Vg = ixi + yJ-

Therefore, 2y = x or 2y = —x, and the smallest and greatest values are obtained at (2, 1),

(-2, 1), (-2, -1), (2, 1), i.e. M =2,m = —2.

6.1 Lagrange Multipliers with Two Constraints

Many problems require us to find the extreme values of a differentiable function f(z,vy,z2)
whose variables are subject to two constraints. If the constraints are g1(z,y,2) = 0 and
g2(x,y,2) = 0 and ¢, and g2 are differentiable, with Vg; not parallel to Vg,, we find the
constrained local maxima and minima of f by introducing two Lagrange multipliers A and
. That is, we locate the points P(x,y, z) where f takes on its constrained extreme values
by finding the values of =, ¥y, z, A and g that simultaneously satisfy the equations

VI=AVg +uVgs, gi(z,y,2) =0, go(2,y,2) = 0. (2)

The equations in (2) have a nice geometric interpretation. The surfaces g; = 0 and g2 = 0
(usually) intersect in a smooth curve, say C', and along this curve we seek points where f
has local maximum and minimum values relative to its other values on the curve. These
are the points where V f is normal to C', as we saw in the Orthogonal Gradient Theorem.

But V¢ and Vg, are also normal to C' at these points because (' lies in the surfaces g; = 0
and g = 0. Therefore V f lies in the plane determined by V¢; and Vg,, which means that
Vf=AVg + Vg, for some A and p. Since the points we seek also lie in both surfaces,
their coordinates must satisfy the equations ¢1(x,y,z) = 0 and ¢a2(x,y, z) = 0, which are
the remaining requirements in Eqs. (2).

7 Using Calculus in the IM O

Which finally brings us to the crux of the entire note. At this point, I would like to say
again what is said at the Introduction.

”To some extent, | regard this note, as should you, as analogous to sex education in school.
It doesn’t condone or encourage you to use calculus on Olympiad inequalities. However,
it rather seeks to ensure that if you insist on using calculus, that you do so properly. =)

Having made that disclaimer, let me turn around and praise calculus as a wonderful dis-
covery that immeasurably improves our understanding of real-valued functions. If you
haven’t encountered calculus yet in school, this section will be a taste of what awaits you
but no more than that. The treatment is far too compressed to give a comprehensive
exposition. After all, isn’t that what textbooks are for.”

With this in mind, I shall illustrate how some olympiad-style questions can be solved using
the techniques illustrated thus far.
Convexity

Example 7.1 (USAMO, 1980) Prove that for numbers a,b,c in the interval [0, 1],

a b c

b+c—|—1+c—|—a—|—1+a—|—b—|—1

F(l—a)(l—b)(1—c) < 1.
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Solution For any nonnegative numbers « and 3, the function f(x) = %ﬁ is convex for
x > 0. Viewed as a function in any of the three variables, the given expression is a sum
of two convex functions and two linear functions, so it is convex. Thus when two of the
variables are fixed, the maximum is attained when the third is at one of the endpoints of
the interval, so the values of the expression are always less than the largest value obtained
by choosing a,b, ¢ € [0, 1]. An easy check of the eight possible cases shows that the value

of the expression cannot exceed 1.

Example 7.2 (USAMO, 1977) If a,b,c,d, e € [p,q] with p > 0, prove that

1 1 1 1 p q.
— — — — — < - =
(a—l—b—l—c—l—d—l—e)(a—l—b—l—c—l— +e) 25—|—6(ﬁ f)

Solution If we fix four of the numbers and regard the fifth as a variable x, then the left
side becomes a function of the form ax + g + v, where «, #,~ are positive and x ranges
over the interval [p,¢]. This function is convex on the interval [p,q], being the sum of
a linear and a convex function, so it attains its maximum at one (or possibly both) of
the endpoints of the interval of definition. As before, this shows that if we are trying to
maximise the value of the expression, it is enough to let a, b, ¢, d, e take the values p, ¢.

It n of the numbers are equal to p, then 5 — n are equal to ¢, then the left hand side is

equal to
n2—|—(5—n) —|—n(5—n)( —|——)—25—|—n5—n f f

The maximal value of n(5 — n) is attained when n = 2 or 3, in which case n(5 — n) = 6,
and the inequality is proved.
Lagrange Multipliers

Example 7.3 (From IMO2001 Mailing List) Let a,b,c are real numbers satisfying a® +
b* + c* = 9. Prove that 2(a + b+ ¢) — abec < 10.

Solution Set f =2(a+b+¢c)—abc,9 =g =a*+b*+ * (constraint).
Then Vf = AVyg gives

2 —bc=X2a, 2—ac=X2b, 2 —ab= X2¢c

Solving, we get the following cases:

(Ha=b=c
(2) a = b =2\ c=2\+ 1, where A = £1,+1/s¢rt(12) (or any cyclic permutations of
a,b,c).

Checking through all the cases, we find that the maximum is obtained when a =b = 2, ¢
= -1 (or any cyclic permutations of a, b, ¢), yielding f = 2(a+ b+ ¢) — abc < 10, as desired.

Example 7.4 (National Team Selection Test 2002, Day 1 @Q3) Suppose the sum of m
pairwise distinct positive even numbers and n pairwise distinct positive odd numbers is

2002. What is the mazximum value of 3m + 4n?

Solution Let f = 3m +4n, g = m(m + 1) + n*(why?) Lagrange Multipliers imply that
V[ =AVg, and we get
3=X2m+1),

4 = A(2n),
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Substituting this into the inequality 2002 > m(m + 1) + n?, we get

3—A3+ ) 4
- < 2002.
o 2 o =200
But A > 0, thus A > *85009. Substituting the expressions of m and n in terms of A into g,
we get
25 3
=  — <999,
I=o9x 2=

Such a set of integers satisfy the conditions: {1,3,5,...,71},{2,4,...,48,50,56}. Therefore,
the maximum is indeed 222.

Important! In the multivariable realm, a new phenomenon emerges that we did not have
to consider in the one-dimensional case. Sometimes we are asked to prove an inequality in
the case where the variables satisfy some constraint. The Lagrange multiplier criterion for
an interior local extremum of the function f(x1,...,2,) under the constraint (x4, ...,z,) =
¢ is the existence of A such that
g—i(xl, ey ) = )\aa—i(xl, s L)

Putting these conditions together with the constraint on ¢, one may be able to solve and
thus put restrictions on the locations of the extrema. Notice that the duality of constrained
optimization shows up in the symmetry between f and ¢ in the criterion. It is even more
critical here than in the one-variable case that the Lagrange multiplier condition is a nec-
essary one only for an interior extremum.

Unless one can prove that the given function is convex, and thus that an interior extremum
must be a global one, one must also check all boundary situations, which is far from easy
to do when (as often happens), these extend to infinity in some directions.

I will illustrate this with a final example.
Example 7.5 (USAMO 2001, )3) Let a,b and ¢ be nonnegative real numbers such that
a’+ b+ + abe = 4.

Prove that
0<ab+bc+ ca —abc <2

Solution Let f = ab+bc+ca—abec and g = a?>+b*+c?4abe = 4. For the lower bound, the
set [0,2] x [0,2] x [0,2] is convex, and since the function is continuous, its maxima/minima
is located at the endpoints. So we check all the 8 possible endpoints and we find that (0,
0, 2) and its two other permutations give the lower bound. In addition, these 3 vertices
satisfy the constraint. The other 5 vertices don’t satisfy the constraint.

Which leads us to finding the upper bound. Using Lagrange Multipliers, we have V f =
AVyg, and thus
b+ ¢ — be = A2a + be)

Now we note that f and ¢ are symmetric in its 3 variables, a,b and ¢. So we also have

a+c—ac=A2b+ ac)
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and

a+b—ab= A2c+ ab)

Then we have our constraint

a’+ b+ + abe = 4.

Solving, we get 2 critical points in the interior (1,1,1) and (0, v/2,v/2) (and its two other
permutations).

Therefore, we get M=2 , at (1,1,1), (v/2,v/2,0) and its two permutations, and m=0 at

(2,0,0) and its two permutations.

8 Conclusion

It is hoped that this note has helped in one way or another in gifting the reader another
tool when solving problems. As this note was constructed very much in a rush, there
might well be mistakes and areas for improvement. Thus, all comments and suggestions
for improvement are welcomed at asteea@singnet.com.sg

THE END

Version 1.0
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