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Introduction

These notes constitute a survey of the theory and practice of inequalities� While their

intended audience is high�school students� primarily present and aspiring participants of the

Math Olympiad Program �MOP�� I hope they prove informative to a wider audience� In

particular� those who experience inequalities via the Putnam competition� or via problem

columns in such journals as Crux Mathematicorum or the American Mathematical Monthly�

should 	nd some bene	t�

Having named high�school students as my target audience� I must now turn around and

admit that I have not made any e�ort to keep calculus out of the exposition� for several

reasons� First� in certain places� rewriting to avoid calculus would make the exposition a

lot more awkward� Second� the calculus I invoke is for the most part pretty basic� mostly

properties of the 	rst and second derivative� Finally� it is my experience that many Olympiad

participants have studied calculus anyway� In any case� I have clearly agged uses of calculus

in the text� and I�ve included a crash course in calculus �Chapter �� to 	ll in the details�

By no means is this primer a substitute for an honest treatise on inequalities� such as

the magnum opus of Hardy� Littlewood and P�olya ��� or its latter�day sequel ���� nor for a

comprehensive catalog of problems in the area� for which we have Stanley Rabinowitz� series

���� My aim� rather than to provide complete information� is to whet the reader�s appetite

for this beautiful and boundless subject�

Also note that I have given geometric inequalities short shrift� except to the extent that

they can be written in an algebraic or trigonometric form� ADD REFERENCE�

Thanks to Paul Zeitz for his MOP ���� notes� upon which these notes are ultimately

based� �In particular� they are my source for symmetric sum notation�� Thanks also to the

participants of the ���� and ���� MOPs for working through preliminary versions of these

notes�

Caveat solver�

It seems easier to fool oneself by constructing a false proof of an inequality than of any other

type of mathematical assertion� All it takes is one reversed inequality to turn an apparently

correct proof into a wreck� The adage �if it seems too good to be true� it probably is� applies

in full force�

To impress the gravity of this point upon the reader� we provide a little exercise in

�



mathematical proofreading� Of the following X proofs� only Y are correct� Can you spot the

fakes�
PUT IN THE EXAMPLES�

�

Chapter �

Separable inequalities

This chapter covers what I call �separable� inequalities� those which can be put in the form

f�x�� � � � �� f�xn� � c

for suitably constrained x�� � � � � xn� For example� if one 	xes the product� or the sum� of the

variables� the AM�GM inequality takes this form� and in fact this will be our 	rst example�

��� Smoothing� convexity and Jensen�s inequality

The �smoothing principle� states that if you have a quantity of the form f�x��� � � �� f�xn�

which becomes smaller as you move two of the variables closer together �while preserving

some constraint� e�g� the sum of the variables�� then the quantity is minimized by making the

variables all equal� This remark is best illustrated with an example� the famous arithmetic

mean and geometric mean �AM�GM� inequality�

Theorem � �AM�GM�� Let x�� � � � � xn be positive real numbers� Then

x� � � � �� xn

n

� n
p

x� � � �xn�

with equality if and only if x� � � � � � xn�

Proof� We will make a series of substitutions that preserve the left�hand side while strictly

increasing the right�hand side� At the end� the xi will all be equal and the left�hand side

will equal the right�hand side� the desired inequality will follow at once� �Make sure that

you understand this reasoning before proceeding
�

If the xi are not already all equal to their arithmetic mean� which we call a for conve�

nience� then there must exist two indices� say i and j� such that xi � a � xj� �If the xi were

all bigger than a� then so would be their arithmetic mean� which is impossible� similarly if

they were all smaller than a�� We will replace the pair xi and xj by

x�i � a� x�j � xi � xj � a�

�



by design� x�i and x�j have the same sum as xi and xj� but since they are closer together�

their product is larger� To be precise�

a�xi � xj � a� � xixj � �xj � a��a� xi� � xixj

because xj � a and a� xi are positive numbers�

By this replacement� we increase the number of the xi which are equal to a� preserving the

left�hand side of the desired inequality by increasing the right�hand side� As noted initially�

eventually this process ends when all of the xi are equal to a� and the inequality becomes

equality in that case� It follows that in all other cases� the inequality holds strictly�

Note that we made sure that the replacement procedure terminates in a 	nite number of

steps� If we had proceeded more naively� replacing a pair of xi by their arithmetic meaon� we

would get an in	nite procedure� and then would have to show that the xi were �converging�

in a suitable sense� �They do converge� but making this precise would require some additional

e�ort which our alternate procedure avoids��

A strong generalization of this smoothing can be formulated for an arbitrary convex

function� Recall that a set of points in the plane is said to be convex if the line segment

joining any two points in the set lies entirely within the set� A function f de	ned on an

interval �which may be open� closed or in	nite on either end� is said to be convex if the set

f�x� y� � R� � y � f�x�g

is convex� We say f is concave if �f is convex� �This terminology was standard at one time�

but today most calculus textbooks use �concave up� and �concave down� for our �convex�

and �concave�� Others use the evocative sobriquets �holds water� and �spills water���

A more enlightening way to state the de	nition might be that f is convex if for any

t � ��� �� and any x� y in the domain of f �

tf�x� � ��� t�f�y� � f�tx � ��� t�y��

If f is continuous� it su�ces to check this for t � ���� Conversely� a convex function is

automatically continuous except possibly at the endpoints of the interval on which it is

de	ned�

DIAGRAM�

Theorem �� If f is a convex function� then the following statements hold�

�� If a � b � c � d� then f�c��f�a�

c�a

� f�d��f�b�

d�b

� �The slopes of secant lines through the

graph of f increase with either endpoint��

�� If f is di�erentiable everywhere� then its derivative �that is� the slope of the tangent

line to the graph of f is an increasing function��

The utility of convexity for proving inequalities comes from two factors� The 	rst factor is

Jensen�s inequality� which one may regard as a formal statement of the �smoothing principle�

for convex functions�

�

Theorem � �Jensen�� Let f be a convex function on an interval I and let w�� � � � � wn be

nonnegative real numbers whose sum is �� Then for all x�� � � � � xn � I�

w�f�x�� � � � �� wnf�xn� � f�w�x� � � � �� wnxn��

Proof� An easy induction on n� the case n � � being the second de	nition above�

The second factor is the ease with which convexity can be checked using calculus� namely

via the second derivative test�

Theorem �� Let f be a twice	di�erentiable function on an open interval I� Then f is convex

on I if and only if f ���x� � � for all x � I�

For example� the AM�GM inequality can be proved by noting that f�x� � logx is

concave� its 	rst derivative is ��x and its second ���x�� In fact� one immediately deduces a

weighted AM�GM inequality� as we will generalize AM�GM again later� we will not belabor

this point�

We close this section by pointing out that separable inequalities sometimes concern

functions which are not necessarily convex� Nonetheless one can prove something


Example 	 �USA
 ������ Let a�� � � � � an be numbers in the interval ��� ���� such that

tan�a� � ���� � tan�a� � ���� � � � �� tan�an � ���� � n� ��

Prove that tan a� tan a� � � � tan an � nn���

Solution� Let xi � tan�ai � ���� and yi � tan ai � �� � xi���� � xi�� so that xi � ���� ���

The claim would follow immediately from Jensen�s inequality if only the function f�x� �

log�� � x���� � x� were convex on the interval ���� ��� but alas� it isn�t� It�s concave on

���� �� and convex on ��� ��� So we have to fall back on the smoothing principle�

What happens if we try to replace xi and xj by two numbers that have the same sum but

are closer together� The contribution of xi and xj to the left side of the desired inequality is

� � xi

�� xi
� � � xj

�� xj
� � �

�

xixj��

xi�xj
� �

�

The replacement in question will increase xixj� and so will decrease the above quantity

provided that xi � xj � �� So all we need to show is that we can carry out the smoothing

process so that every pair we smooth satis	es this restriction�

Obviously there is no problem if all of the xi are positive� so we concentrate on the

possibility of having xi � �� Fortunately� we can�t have more than one negative xi� since

x� � � � � � xn � n � � and each xi is less than �� �So if two were negative� the sum would

be at most the sum of the remaining n � � terms� which is less than n � ��� Moreover� if

x� � �� we could not have x� � xj � � for j � �� � � � � n� else we would have the contradiction

x� � � � �� xn � ��� n�x� � n� ��

�



Thus x��xj � � for some j� and we can replace these two by their arithmetic mean� Now all

of the xi are positive and smoothing �or Jensen� may continue without further restrictions�

yielding the desired inequality�

Problems for Section ���

�� Make up a problem by taking a standard property of convex functions� and specializing

to a particular function� The less evident it is where your problem came from� the

better


�� Given real numbers x�� � � � � xn� what is the minimum value of

jx� x�j� � � �� jx� xnj�

�� �via Titu Andreescu� If f is a convex function and x�� x�� x� lie in its domain� then

f�x�� � f�x�� � f�x�� � f
�

x� � x� � x�

�

�

� �
�

�
f
�

x� � x�

�

�
� f
�

x� � x�

�

�

�f
�

x� � x�

�

��
�

�� �USAMO ������� For a� b� c � �� prove that aabbcc � �abc��a�b�c����

�� �India� ����� Let x�� � � � � xn be n positive numbers whose sum is �� Prove that

x�p
�� x�
� � � �� xnp

�� xn
�
r

n
n� �
�

 � Let A�B�C be the angles of a triangle� Prove that

�� sinA� sinB � sinC � �
p

����

�� cosA� cosB � cosC � ����

�� sinA�� sinB�� sinC�� � ����

�� cotA� cotB � cotC � p
� �i�e� the Brocard angle is at most �� ��

�Beware� not all of the requisite functions are convex everywhere
�

�� �Vietnam� ����� Let x�� � � � � xn �n � �� be positive numbers satisfying

�

x� � ����
�

�

x� � ����
� � � �� �

xn � ����
�

�
����
�

 

Prove that

n
p

x�x� � � �xn

n� �

� �����

�Again� beware of nonconvexity��

�� Let x�� x�� � � � be a sequence of positive real numbers� If ak and gk are the arithmetic

and geometric means� respectively� of x�� � � � � xk� prove that

ann
gnk
� an��n��

gn��k

�����

n�an � gn� � �n� ���an�� � gn���� �����

These strong versions of the AM�GM inequality are due to Rado ��� Theorem  �� and

Popoviciu ���� respectively� �These are just a sample of the many ways the AM�GM

inequality can be sharpened� as evidenced by �����

��� Unsmoothing and noninterior extrema

A convex function has no interior local maximum� �If it had an interior local maximum at

x� then the secant line through �x � �� f�x � ��� and �x � �� f�x � ��� would lie under the

curve at x� which cannot occur for a convex function��

Even better� a function which is linear in a given variable� as the others are held 	xed�

attains no extrema in either direction except at its boundary values�

Problems for Section ���

�� �IMO ������� Determine all possible values of

S �

a

a� b � d
�

b

a � b� c
�

c

b � c� d
�

d

a� c� d

where a� b� c� d are arbitrary positive numbers�

�� �Bulgaria� ����� Let n � � and � � xi � � for all i � �� �� � � � � n� Show that

�x� � x� � � � �� xn�� �x�x� � x�x� � � � �� xnx�� �
jn

�
k

�

and determine when there is equality�
�



��� Discrete smoothing

The notions of smoothing and convexity can also be applied to functions only de	ned on

integers�

Example � How should n balls be put into k boxes to minimize the number of pairs of balls

which lie in the same box


Solution� In other words� we want to minimize
Pk

i��
�
ni

�
�
over sequences n�� � � � � nk of non�

negative integers adding up to n�

If ni � nj � � for some i� j� then moving one ball from i to j decreases the number of

pairs in the same box by�
ni

�
�

�
�
ni � �

�

�
�

�
nj

�
�

�
�
nj � �

�

�
� ni � nj � � � ��

Thus we minimize the number of pairs by making sure no two boxes di�er by more than one

ball� one can easily check that the boxes must each contain bn�kc or dn�ke balls�

Problems for Section ���

�� �Germany� ����� Prove that for all integers k and n with � � k � �n��
�n � �

k � �
�

�
�
�n� �

k � �
�

� � � n� �

n� �
�

�
�n � �

k

�
�

�� �Arbelos� Let a�� a�� � � � be a convex sequence of real numbers� which is to say ak�� �

ak�� � �ak for all k � �� Prove that for all n � ��

a� � a� � � � �� a�n��

n� �

� a� � a	 � � � �� a�n

n

�

�� �USAMO ������� Let a�� a�� a�� � � � be a sequence of positive real numbers satisfying

ai��ai�� � a�i for i � �� �� �� � � � � �Such a sequence is said to be log concave�� Show

that for each n � ��

a� � � � �� an

n � �

� a� � � � �� an��

n� �

� a� � � � �� an��

n

� a� � � � �� an

n

�

�� �MOP ����� Given a sequence fxng�n�� with xn � � for all n � �� such that the

sequence fanxng�n�� is convex for all a � �� show that the sequence flog xng�n�� is also

convex�

�� How should the numbers �� � � � � n be arranged in a circle to make the sum of the

products of pairs of adjacent numbers as large as possible� As small as possible�

�

Chapter �

Symmetric polynomial inequalities

This section is a basic guide to polynomial inequalities� which is to say� those inequalities

which are in �or can be put into� the form P �x�� � � � � xn� � � with P a symmetric polynomial

in the real �or sometimes nonnegative� variables x�� � � � � xn�

��� Introduction to symmetric polynomials

Many inequalities express some symmetric relationship between a collection of numbers�

For this reason� it seems worthwhile to brush up on some classical facts about symmetric

polynomials�

For arbitrary x�� � � � � xn� the coe�cients c�� � � � � cn of the polynomial

�t� x�� � � � �t � xn� � tn � c�t
n�� � � � �� cn��t� cn

are called the elementary symmetric functions of the xi� �That is� ck is the sum of the

products of the xi taken k at a time�� Sometimes it proves more convenient to work with

the symmetric averages

di �

ci�
n

i
� �

For notational convenience� we put c� � d� � � and ck � dk � � for k � n�

Two basic inequalities regarding symmetric functions are the following� �Note that the

second follows from the 	rst��

Theorem � �Newton�� If x�� � � � � xn are nonnegative� then

d�i � di��di�� i � �� � � � � n� ��

Theorem � �Maclaurin�� If x�� � � � � xn are positive� then

d� � d
���

� � � � � � d��nn �

with equality if and only if x� � � � � � xn�

�



These inequalities and many others can be proved using the following trick�

Theorem �� Suppose the inequality
f�d�� � � � � dk� � �

holds for all real �resp� positive� x�� � � � � xn for some n � k� Then it also holds for all real

�resp� positive� x�� � � � � xn���

Proof� Let

P �t� � �t� x�� � � � �t � xn��� �
n��X

i��
�

n � �
i

�
dit
n���i

be the monic polynomial with roots �x�� � � � ��xn� Recall that between any two zeros of a

di�erentiable function� there lies a zero of its derivative �Rolle�s theorem�� Thus the roots

of P ��t� are all real if the xi are real� and all negative if the xi are positive� Since

P ��t� �
n��X

i��
�n � �� i�
�

n� �
i

�
dit
n�i � �n � ��

nX
i��

�
n

i
�

dit
n�i�

we have by assumption f�d�� � � � � dk� � ��

Incidentally� the same trick can also be used to prove certain polynomial identities�

Problems for Section ���

�� Prove that every symmetric polynomial in x�� � � � � xn can be �uniquely� expressed as a

polynomial in the elementary symmetric polynomials�

�� Prove Newton�s and Maclaurin�s inequalities�

�� Prove Newton�s identities� if si � xi� � � � �� xin� then

c�sk � c�sk�� � � � �� ck��s� � kck � ��

�Hint� 	rst consider the case n � k��

�� �Hungary� Let f�x� � xn�an��x
n��� � � ��a�x�� be a polynomial with non�negative

real coe�cients and n real roots� Prove that f�x� � �� � x�n for all x � ��

�� �Gauss���� Let P �z� be a polynomial with complex coe�cients� Prove that the �com�

plex� zeroes of P ��z� all lie in the convex hull of the zeroes of P �z�� Deduce that if S

is a convex subset of the complex plane �e�g�� the unit disk�� and if �f�d�� � � � � dk� � �

holds for all x�� � � � � xn � S for some n � k� then the same holds for x�� � � � � xn�� � S�

 � Prove Descartes� Rule of Signs� let P �x� be a polynomial with real coe�cients written

as P �x� �

P
akix
ki � where all of the aki are nonzero� Prove that the number of

positive roots of P �x�� counting multiplicities� is equal to the number of sign changes

�the number of i such that aki��
aki � �� minus a nonnegative even integer� �For

negative roots� apply the same criterion to P ��x���

��

��� The idiot�s guide to homogeneous inequalities

Suppose one is given a homogeneous symmetric polynomial P and asked to prove that

P �x�� � � � � xn� � �� How should one proceed�

Our 	rst step is purely formal� but may be psychologically helpful� We introduce the

following notation� X
sym

Q�x�� � � � � xn� �
X

�

Q�x����� � � � � x��n��

where � runs over all permutations of �� � � � � n �for a total of n
 terms�� For example� if

n � �� and we write x� y� z for x�� x�� x��X
sym

x� � �x� � �y� � �z�

X
sym

x�y � x�y � y�z � z�x� x�z � y�x � z�y

X
sym

xyz �  xyz�

Using symmetric sum notation can help prevent errors� particularly when one begins with

rational functions whose denominators must 	rst be cleared� Of course� it is always a good

algebra check to make sure that equality continues to hold when it�s supposed to�

In passing� we note that other types of symmetric sums can be useful when the inequal�

ities in question do not have complete symmetry� most notably cyclic summationX
cyclic

x�y � x�y � y�z � z�x�

However� it is probably a bad idea to mix� say� cyclic and symmetric sums in the same

calculation


Next� we attempt to �bunch� the terms of P into expressions which are nonnegative for

a simple reason� For example� X
sym

�x� � xyz� � �

by the AM�GM inequality� while X
sym

�x�y� � x�yz� � �

by a slightly jazzed�up but no more sophisticated argument� we have x�y� � x�z� � x�yz

again by AM�GM�

We can formalize what we are doing using the notion of majorization� If s � �s�� � � � � sn�

and t � �t�� � � � � tn� are two nonincreasing sequences� we say that smajorizes t if s��� � ��sn �

t� � � � �� tn and s� � � � �� si � t� � � � �� ti for i � �� � � � � n�

��



Theorem �� ��Bunching��� If s and t are sequences of nonnegative reals such that s

majorizes t� then X
sym

xs�� � � �xsnn �
X

sym

xt�� � � �xtnn �

Proof� One 	rst shows that if s majorizes t� then there exist nonnegative constants k�� as �

ranges over the permutations of f�� � � � � ng� whose sum is � and such thatX
�

k��s�� � � � � � s�n� � �t�� � � � � tn�

�and conversely�� Then apply weighted AM�GM as follows�X
�

x
s��n�

� � � �xs��n�n �

X
���

k�x
s�������

� � � �xs����n��n

�
X

�

x
P

� k� s�������

� � � �x
P

� k�s����n��

n

�

X
�

x
t����

� � � �xt��n�n �

If the indices in the above proof are too bewildering� here�s an example to illustrate what�s

going on� for s � ��� �� �� and t � ��� �� ��� we have

��� �� �� � ��� �� ���

and so BLAH�

Example �� �USA
 ������ Prove that� for all positive real numbers a� b� c�

�

a� � b� � abc
�

�

b� � c� � abc
�

�

c� � a� � abc
� �
abc

�

Solution� Clearing denominators and multiplying by �� we haveX
sym

�a� � b� � abc��b� � c� � abc�abc � ��a� � b� � abc��b� � c� � abc��c� � a� � abc��

which simpli	es toX
sym

a
bc� �a	b	c� �a�b�c� � a�b�c� �
X

sym

a�b�c� � �a�b� � �a	b	c� �a�b�c� � a
bc�

and in turn to X
sym

�a�b� � �a�b�c� � ��

which holds by bunching�

��

In this case we were fortunate that after slogging through the algebra� the resulting

symmetric polynomial inequality was quite straightforward� Alas� there are cases where

bunching will not su�ce� but for these we have the beautiful inequality of Schur�

Note the extra equality condition in Schur�s inequality� this is a much stronger result

than AM�GM� and so cannot follow from a direct AM�GM argument� In general� one can

avoid false leads by remembering that all of the steps in the proof of a given inequality must

have equality conditions at least as permissive as those of the desired result


Theorem �� �Schur�� Let x� y� z be nonnegative real numbers� Then for any r � ��

xr�x� y��x� z� � yr�y � z��y � x� � zr�z � x��z � y� � ��

Equality holds if and only if x � y � z� or if two of x� y� z are equal and the third is zero�

Proof� Since the inequality is symmetric in the three variables� we may assume without loss

of generality that x � y � z� Then the given inequality may be rewritten as

�x� y��xr�x� z�� yr�y � z�� � zr�x� z��y � z� � ��

and every term on the left�hand side is clearly nonnegative�

Keep an eye out for the trick we just used� creatively rearranging a polynomial into the sum

of products of obviously nonnegative terms�

The most commonly used case of Schur�s inequality is r � �� which� depending on your

notation� can be written
�d�� � d� � �d�d� or

X
sym

x� � �x�y � xyz � ��

If Schur is invoked with no mention r� you should assume r � ��

Example ��� �Japan� �����

�Japan� ����� Let a� b� c be positive real numbers� Prove that

�b � c� a��

�b � c�� � a�
�

�c� a� b��

�c� a�� � b�
�

�a� b� c��

�a� b�� � c�
� �
�

�

Solution� We 	rst simplify slightly� and introduce symmetric sum notation�

X
sym

�ab� �ac

a� � b� � c� � �bc
� ��
�

�

Writing s � a� � b� � c�� and clearing denominators� this becomes

�s�
X

sym

ab � ��s
X

sym

a�bc � ��
X

sym

a�b�c �  s� �  s�
X

sym

ab � ��s
X

sym

a�bc� ��a�b�c�

��



which simpli	es a bit to

 s� � s�
X

sym

ab � �s
X

sym

a�bc � �
X

sym

a�b�c� � ��s
X

sym

a�bc� ��
X

sym

a�b�c�

Now we multiply out the powers of s�X
sym

�a� � �a�b� �a	b� � �a	bc� �a�b� � ��a�b�c � �a�b�c� � ��

The trouble with proving this by AM�GM alone is the a�b�c� with a positive coe�cient�

since it is the term with the most evenly distributed exponents� We save face using Schur�s

inequality �multiplied by �abc��X
sym

�a	bc� �a�b�c � �a�b�c� � ��

which reduces our claim toX
sym

�a� � �a�b� �a	b� � a	bc � �a�b� � �a�b�c � ��

Fortunately� this is a sum of four expressions which are nonnegative by weighted AM�GM�

� � �
X

sym
��a� � b����� a	b�

� �
X

sym
��a� � b� � c��� � a	bc

� � �
X

sym
��a�b� � c�a����� a�b�c

� � �
X

sym
��a�b� a�c� ab� � ac��� � a�b�c�

Equality holds in each case of AM�GM� and in Schur� if and only if a � b � c�

Problems for Section ���

�� Suppose r is an even integer� Show that Schur�s inequality still holds when x� y� z are

allowed to be arbitrary real numbers �not necessarily positive��

�� �Iran� ��� � Prove the following inequality for positive real numbers x� y� z�

�xy � yz � zx�
�

�

�x� y��
�

�

�y � z��
�

�

�z � x��
�

� �
�
�

��

�� The author�s solution to the USAMO ���� problem also uses bunching� but in a subtler

way� Can you 	nd it� �Hint� try replacing each summand on the left with one that

factors��

�� �MOP �����

�� Prove that for x� y� z � ��

x

�x� y��x� z�
�

y

�y � z��y � x�
�

z

�z � x��z � y�
� �

��x� y � z�
�

��� Variations� inhomogeneity and constraints

One can complicate the picture from the previous section in two ways� one can make the

polynomials inhomogeneous� or one can add additional constraints� In many cases� one can

reduce to a homogeneous� unconstrained inequality by creative manipulations or substitu�

tions� we illustrate this process here�

Example �� �IMO ���	���� Let a� b� c be positive real numbers such that abc � �� Prove

that

�

a��b � c�
�

�

b��c� a�
�

�

c��a � b�
� �

�
�

Solution� We eliminate both the nonhomogeneity and the constraint by instead proving that

�

a��b� c�
�

�

b��c� a�
�

�

c��a� b�
� �

��abc�	��
�

This still doesn�t look too appetizing� we�d prefer to have simpler denominators� So we make

the additional substitution a � ��x� b � ��y� c � ��z a � x�y� b � y�z� c � z�x� in which

case the inequality becomes
x�

y � z
�

y�
z � x
�

z�
x � y
� �

�
�xyz����� �����

Now we may follow the paradigm� multiply out and bunch� We leave the details to the

reader� �We will revisit this inequality several times later��

On the other hand� sometimes more complicated maneuvers are required� as in this

o�beat example�

Example �	 �Vietnam
 ����� Let a� b� c� d be four nonnegative real numbers satisfying

the conditions
��ab � ac� ad� bc � bd� cd� � abc� abd � acd� bcd � � �

��



Prove that

a� b � c� d � �
�

�ab � ac� ad� bc � bd� cd�

and determine when equality holds�

Solution �by Sasha Schwartz�� Adopting the notation from the previous section� we want to

show that

�d� � d� � � �� d� � d��

Assume on the contrary that we have �d� � d� � � but d� � d�� By Schur�s inequality plus

Theorem �� we have

�d�� � d� � �d�d��

Substituting d� � �� �d� gives
�d�� � � � ��d� � ��d� � �d�� � �d��

which when we collect and factor implies ��d� � ���d�� � �� � �� However� on one hand

�d� � � � �d� � � � �d� � �� on the other hand� by Maclaurin�s inequality d�� � d� � d�� so

d� � �� Thus ��d�� ���d��� �� is negative� a contradiction� As for equality� we see it implies

��d� � ���d�� � �� � � as well as equality in Maclaurin and Schur� so d� � d� � d� � ��

Problems for Section ���

�� �IMO ������� Prove that � � yz � zx � xy � �xyz � ����� where x� y and z are

non�negative real numbers for which x� y � z � ��

�� �Ireland� ����� Let a� b� c be positive real numbers such that a � b � c � abc� Prove

that a� � b� � c� � abc� �In fact� the right hand side can be improved to
p
�abc��

�� �Bulgaria� ����� Let a� b� c be positive real numbers such that abc � �� Prove that

�

� � a� b
�

�

� � b� c
�

�

� � c� a
� �
� � a

�

�
� � b

�

�
� � c

�

��	 Substitutions� algebraic and trigonometric

Sometimes a problem can be simpli	ed by making a suitable substition� In particular� this

technique can often be used to simplify unwieldy constraints�

One particular substitution occurs frequently in problems of geometric origin� The con�

dition that the numbers a� b� c are the sides of a triangle is equivalent to the constraints

a� b � c� b � c � a� c� a � b

� 

coming from the triangle inequality� If we let x � �b � c � a���� y � �c � a � b���� z �

�a� b� c���� then the constraints become x� y� z � �� and the original variables are also easy

to express�

a � y � z� b � z � x� c � x� y�

A more exotic substitution can be used when the constraint a� b� c � abc is given� Put

	 � arctan a� 
 � arctan b� � � arctan c�

then 	 � 
 � � is a multiple of �� �If a� b� c are positive� one can also write them as the

cotangents of three angles summing to �����

Problems for Section ���

�� �IMO ����� � Let a� b� c be the lengths of the sides of a triangle� Prove that

a�b�a� b� � b�c�b� c� � c�a�c� a� � ��

and determine when equality occurs�

�� �Asian Paci	c� ��� � Let a� b� c be the lengths of the sides of a triangle� Prove that

p
a � b� c�

p
b � c� a�

p
c� a� b � p
a �

p
b�

p
c�

�� �MOP� ����� Let a� b� c be lengths of the the sides of a triangle� Prove that

a� � b� � c� � �abc � �maxfja� bj�� jb� cj�� jc� aj�g�

�� �Arbelos� Prove that if a� b� c are the sides of a triangle and

��ab� � bc� � ca�� � a�b � b�c� c�a � �abc�

then the triangle is equilateral�

�� �Korea� ����� For positive real numbers a� b� c with a � b� c � abc� show that

�p
� � a�

�

�p
� � b�

�

�p
� � c�

� �
�

�

and determine when equality occurs� �Try proving this by dehomogenizing and you�ll

appreciate the value of the trig substitution
�

��



Chapter �

The toolbox

In principle� just about any inequality can be reduced to the basic principles we have outlined

so far� This proves to be fairly ine�cient in practice� since once spends a lot of time repeating

the same reduction arguments� More convenient is to invoke as necessary some of the famous

classical inequalities described in this chapter�

We only barely scratch the surface here of the known body of inequalities� already ���

provides further examples� and ��� more still�

��� Power means

The power means constitute a simultaneous generalization of the arithmetic and geometric

means� the basic inequality governing them leads to a raft of new statements� and exposes a

symmetry in the AM�GM inequality that would not otherwise be evident�

For any real number r 	� �� and any positive reals x�� � � � � xn� we de	ne the r�th power

mean of the xi as

M r�x�� � � � � xn� �
�

xr� � � � �� xrn

n

���r
�

More generally� if w�� � � � � wn are positive real numbers adding up to �� we may de	ne the

weighted r�th power mean
M r
w�x�� � � � � xn� � �w�x
r

� � � � �� wnx
r

n�
��r �

Clearly this quantity is continuous as a function of r �keeping the xi 	xed�� so it makes sense

to de	ne M� as

lim
r��
M r
w � lim
r��

�
�

r
exp log�w�x
r

� � � � �� wnx
r

n
�

� exp
d

dr
����

r��
log�w�x
r

� � � � �� wnx
r

n�

� exp
w� logx� � � � �� wn log xn

w� � � � �� wn

� xw�
� � � �xwn
n

��

or none other than the weighted geometric mean of the xi�

Theorem � �Power mean inequality�� If r � s� then

M r
w�x�� � � � � xn� �M s
w�x�� � � � � xn�

with equality if and only if x� � � � � � xn�

Proof� Everything will follow from the convexity of the function f�x� � xr for r � � �its

second derivative is r�r � ��xr���� but we have to be a bit careful with signs� Also� we�ll

assume neither r nor s is nonzero� as these cases can be deduced by taking limits�

First suppose r � s � �� Then Jensen�s inequality for the convex function f�x� � xr�s

applied to xs�� � � � � x
s

n gives
w�x
r

� � � � �� wnx
r

n � �w�x
s

� � � � �� wnx
s

n�
r�s

and taking the ��r�th power of both sides yields the desired inequality�

Now suppose � � r � s� Then f�x� � xr�s is concave� so Jensen�s inequality is reversed�

however� taking ��r�th powers reverses the inequality again�

Finally� in the case r � � � s� f�x� � xr�s is again convex� and taking ��r�th powers

preserves the inequality� �Or this case can be deduced from the previous ones by comparing

both power means to the geometric mean��

Several of the power means have speci	c names� Of course r � � yields the arithmetic

mean� and we de	ned r � � as the geometric mean� The case r � �� is known as the

harmonic mean� and the case r � � as the quadratic mean or root mean square�

Problems for Section ���

�� �Russia� ����� Prove that for x� y � ��

x
x	 � y�
�

y

y	 � x�
� �

xy
�

�� �Romania� ��� � Let x�� � � � � xn�� be positive real numbers such that x� � � � �� xn �

xn��� Prove that

nX
i��

p
xi�xn�� � xi� �

vuut nX
i��

xn���xn�� � xi��

�� �Poland� ����� For a 	xed integer n � � compute the minimum value of the sum

x� �
x��

�
� � � �� xnn

n

given that x�� � � � � xn are positive numbers subject to the condition

�
x�
� � � �� �

xn
� n�

��



�� Let a� b� c� d � �� Prove that
�

a
�

�
b

�
�

c
�

� 
d

�  �

a� b � c� d
�

�� Extend the Rado�Popoviciu inequalities to power means by proving that

M r
w�x�� � � � � xn�

k �M s
w�x�� � � � � xn�

k

wn

� M r
w��x�� � � � � xn���

k �M s
w��x�� � � � � xn���

k

w�n��

whenever r � k � s� Here the weight vector w� � �w��� � � � � w
�
n��� is given by w�i �

wi��w� � � � �� wn���� �Hint� the general result can be easily deduced from the cases

k � r� s��

 � Prove the following �converse� to the power mean inequality� if r � s � �� then�X
i

xri
	��r

�
�X

i

xsi
	��s

�

��� Cauchy
Schwarz� H�older and Minkowski inequali


ties

This section consists of three progressively stronger inequalities� beginning with the simple

but versatile Cauchy�Schwarz inequality�

Theorem �� �Cauchy�Schwarz�� For any real numbers a�� � � � � an� b�� � � � � bn�

�a�� � � � �� a�n��b
�
� � � � �� b�n� � �a�b� � � � �� anbn�

��

with equality if the two sequences are proportional�

Proof� The di�erence between the two sides isX
i�j

�aibj � ajbi�
�

and so is nonnegative� with equality i� aibj � ajbi for all i� j�

The �sum of squares� trick used here is an important one� look for other opportunities

to use it� A clever example of the use of Cauchy�Schwarz is the proposer�s solution of

Example ��� in which the xyz�form of the desired equation is deduced as follows� start with

the inequality�
x�

y � z
�

y�
z � x

�

z�
x� y

�
��y � z� � �z � x� � �x� y�� � �x � y � z��

which follows from Cauchy�Schwarz� cancel x � y � z from both sides� then apply AM�GM

to replace x� y � z on the right side with ��xyz�����

A more exible variant of Cauchy�Schwarz is the following�

��

Theorem �� �H�older�� Let w�� � � � � wn be positive real numbers whose sum is �� For any

positive real numbers aij�

nY
i��

�
mX

j��
aij

	wi

�
mX

j��

nY
i��

awi
ij �

Proof� By induction� it su�ces to do the case n � �� in which case we�ll write w� � ��p and

w� � ��q� Also without loss of generality� we may rescale the aij so that
Pm

j�� aij � � for

i � �� �� In this case� we need to prove
� �

mX
j��

a��p�j a
��q

�j �

On the other hand� by weighted AM�GM�

a�j
p

�
a�j

q
� a

��p
�j a

��q
�j

and the sum of the left side over j is ��p � ��q � �� so the proof is complete� �The special

case of weighted AM�GM we just used is sometimes called Young�s inequality��

Cauchy�Schwarz admits a geometric interpretation� as the triangle inequality for vectors

in n�dimensional Euclidean space�q
x�� � � � �� x�n �

q
y�� � � � �� y�n �

p
�x� � y��� � � � �� �xn � yn���

One can use this interpretation to prove Cauchy�Schwarz by reducing it to the case in two

variables� since two nonparallel vectors span a plane� Instead� we take this as a starting

point for our next generalization of Cauchy�Schwarz �which will be the case r � �� s � � of

Minkowski�s inequality��

Theorem �� �Minkowski�� Let r � s be nonzero real numbers� Then for any positive real

numbers aij� 

� mX

j��
�
nX

i��
arij

	s�r
�

A
��s

�



� nX
i��

�
mX

j��
asij

	r�s
�

A
��r

�

Minkowski�s theorem may be interpreted as a comparison between taking the r�th power

mean of each row of a matrix� then taking the s�th power mean of the results� versus taking

the s�th power mean of each column� then taking the r�th power mean of the result� If r � s�

the former result is larger� which should not be surprising since there we only use the smaller

s�th power mean operation once�

This interpretation also tells us what Minkowski�s theorem should say in case one of r� s

is zero� The result is none other than H!older�s inequality


��



Proof� First suppose r � s � �� Write L and R for the left and right sides� respectively� and

for convenience� write ti �
Pm

j�� a
s

ij� Then

Rr �

nX
i��

t
r�s

i �

nX
i��

tit
r�s��

i

�

mX
j��

�
nX

i��
asijt
r�s��

i

	

�
mX

j��
�

nX
i��

arij
	s�r� nX

i��
t
r�s

i

	��s�r
� LsRr�s�

where the one inequality is a �term�by�term� invocation of H!older�

Next suppose r � � � s� Then the above proof carries through provided we can prove a

certain variation of H!older�s inequality with the direction reversed� We have left this to you

�Problem �������

Finally suppose � � r � s� Then replacing aij by ��aij for all i� j turns the desired

inequality into another instance of Minkowski� with r and s replaced by �s and �r� This

instance follows from what we proved above�

Problems for Section ���

�� �Iran� ����� Let x� y� z be real numbers not less than �� such that ��x���y���z � ��

Prove that

p
x � y � z � p
x� � �
p

y � � �
p

z � ��

�� Complete the proof of Minkowski�s inequality by proving that if k � � and a�� � � � � an�

b�� � � � � bn � �� then

ak�b
��k

� � � � �� aknb
��k

n � �a� � � � �� an�
k�b� � � � �� bn�
��k�

�Hint� reduce to H!older��

�� Formulate a weighted version of Minkowski�s inequality� with one weight corresponding

to each aij� Then show that this apparently stronger result follows from Theorem ��


�� �Titu Andreescu� Let P be a polynomial with positive coe�cients� Prove that if

P
�

�
x

�
� �

P �x�

holds for x � �� then it holds for every x � ��

��

�� Prove that for w� x� y� z � ��

w�x� � x�y� � y�z� � z�x� � w�x�y� � x�y�z� � y�z�w� � z�x�y��

�This can be done either with H!older or with weighted AM�GM� try it both ways��

 � �China� Let ri� si� ti� ui� vi be real numbers not less than �� for i � �� �� � � � � n� and let

R� S� T� U� V be the respective arithmetic means of the ri� si� ti� ui� vi� Prove that

nY
i��

risitiuivi � �

risitiuivi � �
�
�

RSTUV � �

RSTUV � �
�n

�

�Hint� use H!older and the concavity of f�x� � �x� � ����x� � ���

�� �IMO ������� Let S be a 	nite set of points in three�dimensional space� Let Sx� Sy� Sz

be the orthogonal projections of S onto the yz� zx� xy planes� respectively� Show that

jSj� � jSxjjSyjjSzj�

�Hint� Use Cauchy�Schwarz to prove the inequality

�X
i�j�k

aijbjkcki
	�

�
X

i�j
a�ij
X

j�k
b�jk
X

k�i
c�ki�

Then apply this with each variable set to � or ���

��� Rearrangement� Chebyshev and �arrange in or


der

Our next theorem is in fact a triviality that every businessman knows� you make more

money by selling most of your goods at a high price and a few at a low price than vice versa�

Nonetheless it can be useful
 �In fact� an equivalent form of this theorem was on the ����

IMO��

Theorem �� �Rearrangement�� Given two increasing sequences x�� � � � � xn and y�� � � � � yn

of real numbers� the sum

nX
i��

xiy��i��

for � a permutation of f�� � � � � ng� is maximized when � is the identity permutation and

minimized when � is the reversing permutation�
��



Proof� For n � �� the inequality ac � bd � ad � bc is equivalent� after collecting terms and

factoring� to �a� b��c�d� � �� and so holds when a � b and c � d� We leave it to the reader

to deduce the general case from this by successively swapping pairs of the yi�

Another way to state this argument involves �partial summation� �which the calculus�

equipped reader will recognize as analogous to doing integration by parts�� Let si � y��i� �

� � �� y��n� for i � �� � � � � n� and write

nX
i��

xiy��i� � x�s� �

nX
j��

�xj � xj���sj�

The desired result follows from this expression and the inequalities

x� � � � �� xn�j�� � sj � xj � � � �� xn�

in which the left equality holds for � equal to the reversing permutation and the right equality

holds for � equal to the identity permutation�

One important consequence of rearrangement is Chebyshev�s inequality�

Theorem �� �Chebyshev�� Let x�� � � � � xn and y�� � � � � yn be two sequences of real numbers�

at least one of which consists entirely of positive numbers� Assume that x� � � � � � xn and

y� � � � � � yn� Then
x� � � � �� xn

n

� y� � � � �� yn

n

� x�y� � � � �� xnyn

n

�

If instead we assume x� � � � � � xn and y� � � � � � yn� the inequality is reversed�

Proof� Apply rearrangement to x�� x�� � � � � xn and y�� � � � � yn� but repeating each number n

times�
The great power of Chebyshev�s inequality is its ability to split a sum of complicated

terms into two simpler sums� We illustrate this ability with yet another solution to IMO

������� Recall that we need to prove

x�
y � z

�

y�
z � x

�

z�
x� y

� x � y � z

�

�

Without loss of generality� we may assume x � y � z� in which case ���y� z� � ���z�x� �

���x� y�� Thus we may apply Chebyshev to deduce

x�
y � z

�

y�
z � x

�

z�
x � y

� x� � y� � z�

�

�
�
�

y � z
�

�
z � x

�

�
x � y

�
�

By the Power Mean inequality�
x� � y� � z�

�

�
�
x� y � z

�

��

�
�

�
�

y � z
�

�
z � x

�

�
x� y

�
� �

x� y � z

��

and these three inequalities constitute the proof�

The rearrangement inequality� Chebyshev�s inequality� and Schur�s inequality are all

general examples of the �arrange in order� principle� when the roles of several variables are

symmetric� it may be pro	table to desymmetrize by assuming �without loss of generality�

that they are sorted in a particular order by size�

Problems for Section ���

�� Deduce Schur�s inequality from the rearrangement inequality�

�� For a� b� c � �� prove that aabbcc � abbcca�

�� �IMO ������� Prove that the following assertion is true for n � � and n � � and false

for every other natural number n � �� if a�� � � � � an are arbitrary real numbers� then

nX
i��

Y
j ��i

�ai � aj� � ��

�� �Proposed for ���� USAMO� Let x� y� z be real numbers greater than �� Prove that

xx
���yzyy
���zxzz
���xy � �xyz�xy�yz�zx�

��	 Bernoulli�s inequality

The following quaint�looking inequality occasionally comes in handy�

Theorem �� �Bernoulli�� For r � � and x � �� �or r an even integer and x any real��

�� � x�r � � � xr�

Proof� The function f�x� � ���x�r has second derivative r�r������x�r�� and so is convex�

The claim is simply the fact that this function lies above its tangent line at x � ��

Problems for Section ���

�� �USA� ����� Let a � �mm�� � nn�����mm � nn� for m�n positive integers� Prove

that am � an � mm � nn� �The problem came with the hint to consider the ratio

�aN � NN ���a � N� for real a � � and integer N � �� On the other hand� you can

prove the claim for real m�n � � using Bernoulli��

��



Chapter �

Calculus

To some extent� I regard this section� as should you� as analogous to sex education in school"

it doesn�t condone or encourage you to use calculus on Olympiad inequalities� but rather

seeks to ensure that if you insist on using calculus� that you do so properly�

Having made that disclaimer� let me turn around and praise calculus as a wonderful

discovery that immeasurably improves our understanding of real�valued functions� If you

haven�t encountered calculus yet in school� this section will be a taste of what awaits you#but

no more than that� our treatment is far too compressed to give a comprehensive exposition�

After all� isn�t that what textbooks are for�

Finally� let me advise the reader who thinks he�she knows calculus already not to breeze

too this section too quickly� Read the text and make sure you can write down the proofs

requested in the exercises�

	�� Limits� continuity� and derivatives

The de	nition of limit attempts to formalize the idea of evaluating a function at a point

where it might not be de	ned� by taking values at points �in	nitely close� to the given

point� Capturing this idea in precise mathematical language turned out to be a tricky

business which remained unresolved until long after calculus had proven its utility in the

hands of Newton and Leibniz� the de	nition we use today was given by Weierstrass�

Let f be a function de	ned on an open interval� except possibly at a single point t� We

say the limit of f at t exists and equals L if for each positive real �� there exists a positive

real � �depending on �� of course� such that

� � jx� tj � � �� jf�x�� Lj � ��

We notate this limx�t f�x� � L� If f is also de	ned at t and f�t� � L� we say f is continuous

at t�
Most common functions �polynomials� sine� cosine� exponential� logarithm� are contin�

uous for all real numbers �the logarithm only for positive reals�� and those which are not

�rational functions� tangent� are continuous because they go to in	nity at certain points� so

� 

the limits in question do not exist� The 	rst example of an �interesting� limit occurs in the

de	nition of the derivative�

Again� let f be a function de	ned on an open interval and t a point in that interval� this

time we require that f�t� is de	ned as well� If the limit

lim
x�t

f�x�� f�t�

x� t

exists� we call that the derivative of f at t and notate it f ��t�� We also say that f is

di�erentiable at t �the process of taking the derivative is called di�erentiation��

For example� if f�x� � x�� then for x 	� t� �f�x�� f�t����x� t� � x� t� and so the limit

exists and f ��t� � �t� More generally� you will show in the exercises that for f�x� � xn�

f ��t� � ntn��� On the other hand� for other functions� e�g� f�x� � sin x� the di�erence

quotient cannot be expressed in closed form� so certain inequalities must be established in

order to calculate the derivative �as will also take place in the exercises��

The derivative can be geometrically interpreted as the slope of the tangent line to the

graph of f at the point �t� f�t��� This is because the tangent line to a curve can be regarded

as the limit of secant lines� and the quantity �f�x� t�� f�x���t is precisely the slope of the

secant line through �x� f�x�� and �x� t� f�x� t��� �The 	rst half of this sentence is entirely

unrigorous� but it can be rehabilitated��

It is easy to see that a di�erentiable function must be continuous� but the converse is not

true� the function f�x� � jxj �absolute value� is continuous but not di�erentiable at x � ��

An important property of continuous functions� though one we will not have direct need

for here� is the intermediate value theorem� This theorem says the values of a continuous

function cannot �jump�� as the tangent function does near ����

Theorem ��� Suppose the function f is continuous on the closed interval �a� b�� Then for

any c between f�a� and f�b�� there exists x � �a� b� such that f�x� � c�

Proof� Any proof of this theorem tends to be a bit unsatisfying� because it ultimately boils

down to one�s de	nition of the real numbers� For example� one consequence of the standard

de	nition is that every set of real numbers which is bounded above has a least upper bound�

In particular� if f�a� � c and f�b� � c� then the set of x � �a� b� such that f�x� � c has a least

upper bound y� By continuity� f�x� � c� on the other hand� if f�x� � c� then f�x � t� � �

for all t less than some positive �� again by continuity� in which case x� � is an upper bound

smaller than x� a contradiction� Hence f�x� � c�

Another important property of continuous functions is the �extreme value theorem��

Theorem ��� A continuous function on a closed interval has a global maximum and mini	

mum�

Proof�

��



This statement is of course false for an open or in	nite interval� the function may go to

in	nity at one end� or may approach an extreme value without achieving it� �In technical

terms� a closed interval is compact while an open interval is not��

Problems for Section ���

�� Prove that f�x� � x is continuous�

�� Prove that the product of two continuous functions is continuous� and that the recip�

rocal of a continuous function is continuous at all points where the original function is

nonzero� Deduce that all polynomials and rational functions are continuous�

�� �Product rule� Prove that �fg�� � fg�� f �g and 	nd a similar formula for �f�g��� �No�

it�s not f ��g � f�g�� Try again��

�� �Chain rule� If h�x� � f�g�x��� prove that h��x� � f ��g�x��g��x��

�� Show that the derivative of xn is nxn�� for n � Z�

 � Prove that sin x � x � tan x for � � x � ���� �Hint� use a geometric interpretation�

and remember that x represents an angle in radians
� Conclude that limx�� sin x�x �

��

�� Show that the derivative of sinx is cos x and that of cos x is �� sinx�� While you�re at

it� compute the derivatives of the other trigonometric functions�

�� Show that an increasing function on a closed interval satisfying the intermediate value

theorem must be continuous� �Of course� this can fail if the function is not increasing
�

In particular� the functions cx �where c � � is a constant� and log x are continuous�

�� For c � � a constant� the function f�x� � �cx � ���x is continuous for x 	� � by the

previous exercise� Prove that its limit at � exists� �Hint� if c � �� show that f is

increasing for x 	� �� it su�ces to prove this for rational x by continuity��

��� Prove that the derivative of cx equals kcx for some constant k� �Use the previous

exercise�� Also show �using the chain rule� that k is proportional to the logarithm of

c� In fact� the base e of the natural logarithms is de	ned by the property that k � �

when c � e�

��� Use the chain rule and the previous exercise to prove that the derivative of log x is ��x�

�Namely� take the derivative of elog x � x��

��� �Generalized product rule� Let f�y� z� be a function of two variables� and let g�x� �

f�x� x�� Prove that g��x� can be written as the sum of the derivative of f as a function

of y alone �treating z as a constant function� and the derivative of f as a function of z

alone� both evaluated at y � z � x� For example� the derivative of xx is xx logx � xx�

��

	�� Extrema and the �rst derivative

The derivative can be used to detect local extrema� A point t is a local maximum �resp�

minimum� for a function f if f�t� � f�x� �resp� f�t� � f�x�� for all x in some open interval

containing t�

Theorem �	� If t is a local extremum for f and f is di�erentiable at t� then f ��t� � ��

Corollary � �Rolle�� If f is di�erentiable on the interval �a� b� and f�a� � f�b� � �� then

there exists x � �a� b� such that f ��x� � ��

So for example� to 	nd the extrema of a continuous function on a closed interval� it

su�ces to evaluate it at


 all points where the derivative vanishes�


 all points where the derivative is not de	ned� and


 the endpoints of the interval�

since we know the function has global minima and maxima� and each of these must occur at

one of the aforementioned points� If the interval is open or in	nite at either end� one must

also check the limiting behavior of the function there�

A special case of what we have just said is independently useful� if a function is positive

at the left end of an interval and has nonnegative derivative on the interval� it is positive on

the entire interval�

	�� Convexity and the second derivative

As noted earlier� a twice di�erentiable function is convex if and only if its second derivative

is nonnegative�

	�	 More than one variable

Warning� The remainder of this chapter is somewhat rougher going than what came before�

in part because we need to start using the language and ideas of linear algebra� Rest assured

that none of the following material is referenced anywhere else in the notes�

We have a pretty good understanding now of the relationship between extremization

and the derivative� for functions in a single variable� However� most inequalities in nature

deal with functions in more than one variable� so it behooves us to extend the formalism of

calculus to this setting� Note that whatever we allow the domain of a function to be� the

range of our �functions� will always be the real numbers� �We have no need to develop the

whole of multivariable calculus when all of our functions arise from extremization questions
�

��



The formalism becomes easier to set up in the language of linear algebra� If f is a

function from a vector space to R de	ned in a neighborhood of �i�e� a ball around� a point

x� then we say the limit of f at x exists and equals L if for every � � �� there exists � � �

such that

� � jjtjj � � �� jf�x� t�� Lj � ��

�The double bars mean length in the Euclidean sense� but any reasonable measure of the

length of a vector will give an equivalent criterion� for example� measuring a vector by the

maximum absolute value of its components� or by the sum of the absolute values of its

components�� We say f is continuous at x if lim�t�� f�x�t� � f�x�� If y is any vector and x

is in the domain of f � we say the directional derivative of f along x in the direction y exists

and equals f�y�x� if

f�y�x� � lim
t��

f�x � ty�� f�x�

t

�

If f is written as a function of variables x�� � � � � xn� we call the directional derivative along

the i�th standard basis vector the partial derivative of f with respect to i and denote it by

�f
�xi
� In other words� the partial derivative is the derivative of f as a function of xi along�

regarding the other variables as constants�

TOTAL DERIVATIVE

Caveat
 Since the derivative is not a �function� in our restricted sense �it has takes

values in a vector space� not R� we cannot take a �second derivative�#yet�

ASSUMING the derivative exists� it can be computed by taking partial derivatives along

a basis�

	�� Convexity in several variables

A function f de	ned on a convex subset of a vector space is said to be convex if for all x� y

in the domain and t � ��� ���
tf�x� � ��� t�f�y� � f�tx � ��� t�y��

Equivalently� f is convex if its restriction to any line is convex� Of course� we say f is concave

if �f is convex�

The analogue of the second derivative test for convexity is the Hessian criterion� A

symmetric matrix M �that is� one with Mij � Mji for all i� j� is said to be positive denite if

Mx�x � � for all nonzero vectors x� or equivalently� if its eigenvalues are all real and positive�

�The 	rst condition implies the second because all eigenvalues of a symmetric matrix are

real� The second implies the 	rst because if M has positive eigenvalues� then it has a square

root N which is also symmetric� and Mx � x � �Nx� � �Nx� � ���

��

Theorem �� �Hessian test�� A twice di�erentiable function f�x�� � � � � xn� is convex in a

region if and only if the Hessian matrix
Hij �

��

�xi�xj

is positive denite everywhere in the region�

Note that the Hessian is symmetric because of the symmetry of mixed partials� so this

statement makes sense�

Proof� The function f is convex if and only if its restriction to each line is convex� and the

second derivative along a line through x in the direction of y is �up to a scale factor� just

Hy � y evaluated at x� So f is convex if and only if Hy � y � � for all nonzero y� that is� if

H is positive de	nite�

The bad news about this criterion is that determining whether a matrix is positive

de	nite is not a priori an easy task� one cannot check Mx � x � � for every vector� so it

seems one must compute all of the eigenvalues of M � which can be quite a headache� The

good news is that there is a very nice criterion for positive de	niteness of a symmetric matrix�

due to Sylvester� that saves a lot of work�

Theorem �� �Sylvester�s criterion�� An n�n symmetric matrix of real numbers is pos	

itive denite if and only if the determinant of the upper left k � k submatrix is positive for

k � �� � � � � n�

Proof� By the Mx � x de	nition� the upper left k� k submatrix of a positive de	nite matrix

is positive de	nite� and by the eigenvalue de	nition� a positive de	nite matrix has positive

determinant� Hence Sylvester�s criterion is indeed necessary for positive de	niteness�

We show the criterion is also su�cient by induction on n� BLAH�

Problems for Section ��	

�� �IMO �� ���� Prove that for all real numbers x�� x�� y�� y�� z�� z� with x�� x� � � and

x�y� � z�� � x�y� � z�� the inequality

�

�x� � x���y� � y��� �z� � z���
� �

x�y� � z��
�

�

x�y� � z��

is satis	ed� and determine when equality holds� �Yes� you really can apply the material

of this section to the IMO
 Verify convexity of the appropriate function using the

Hessian and Sylvester�s criterion��

��



	�� Constrained extrema and Lagrange multipliers

In the multivariable realm� a new phenomenon emerges that we did not have to consider in

the one�dimensional case� sometimes we are asked to prove an inequality in the case where

the variables satisfy some constraint�

The Lagrange multiplier criterion for an interior local extremum of the function f�x�� � � � � xn�

under the constraint g�x�� � � � � xn� � c is the existence of � such that

�f
�xi

�x�� � � � � xn� � �
�g

�xi
�x�� � � � � xn��

Putting these conditions together with the constraint on g� one may be able to solve and

thus put restrictions on the locations of the extrema� �Notice that the duality of constrained

optimization shows up in the symmetry between f and g in the criterion��

It is even more critical here than in the one�variable case that the Lagrange multiplier

condition is a necessary one only for an interior extremum� Unless one can prove that the

given function is convex� and thus that an interior extremum must be a global one� one must

also check all boundary situations� which is far from easy to do when �as often happens�

these extend to in	nity in some direction�

For a simple example� let f�x� y� z� � ax� by� cz with a� b� c constants� not all zero� and

consider the constraint g�x� y� z� � �� where g�x� y� z� � x� � y� � z�� Then the Lagrange

multiplier condition is that

a � ��x� b � ��y� c � ��z�

The only points satisfying this condition plus the original constraint are

� �p
a� � b� � c�

�a� b� c��

and these are indeed the minimum and maximum for f under the constraint� as you may

verify geometrically�

��

Chapter �

Coda

��� Quick reference

Here�s a handy reference guide to the techniques we�ve introduced�


 Arithmetic�geometric�harmonic means


 Arrange in order


 Bernoulli


 Bunching


 Cauchy�Schwarz


 Chebyshev


 Convexity


 Derivative test


 Duality for constrained optimization


 Equality conditions


 Factoring


 Geometric interpretations


 Hessian test


 H!older


 Jensen

��




 Lagrange multipliers


 Maclaurin


 Minkowski


 Newton


 Power means


 Rearrangement


 Reduction of the number of variables �Theorem ��


 Schur


 Smoothing


 Substitution �algebraic or trigonometric�


 Sum of squares


 Symmetric sums


 Unsmoothing �boundary extrema�

��� Additional problems

Here is an additional collection of problems covering the entire range of techniques we have

introduced� and one or two that you�ll have to discover for yourselves


Problems for Section 	��

�� Let x� y� z � � with xyz � �� Prove that x � y � z � x� � y� � z��

�� The real numbers x�� x�� � � � � xn belong to the interval ���� �� and the sum of their

cubes is zero� Prove that their sum does not exceed n���

�� �IMO ������� Let x�� � � � � x� be positive reals such that

�x�i�� � xi��xi����x
�

i�� � xi��xi��� � �

for i � �� � � � � �� where xn�� � xn for all n� Prove that x� � � � � � x��

�� �USAMO ������� Let x� y� z � � with x � y � z � �� Prove that

x� � y� � z� �  xyz � �
�
�

��

�� �Taiwan� ����� Let P �x� � ��a�x� � � ��an��x
n���xn be a polynomial with complex

coe�cients� Suppose the roots of P �x� are 	�� 	�� � � � � 	n with

j	�j � �� j	�j � �� � � � � j	jj � �

and

j	j��j � �� j	j��j � �� � � � � j	nj � ��

Prove that

jY
i��
j	ij �
p

ja�j� � ja�j� � � � �� janj��

�Hint� look at the coe�cients of P �x�P �x�� the latter being ��a�x�� � ��an��xn���xn��

 � Prove that� for any real numbers x� y� z�

��x� � x � ���y� � y � ���z� � z � �� � �xyz�� � xyz � ��

�� �a� Prove that any polynomial P �x� such that P �x� � � for all real x can be written

as the sum of the squares of two polynomials�

�b� Prove that the polynomial

x��x� � y���x� � �� � y��y� � ���y� � x�� � ��� x����� y��

is everywhere nonnegative� but cannot be written as the sum of squares of any

number of polynomials� �One of Hilbert�s problems� solved by Artin and Schreier�

was to prove that such a polynomial can always be written as the sum of squares

of rational functions��

��
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