1 Extra questions to think about:
1. Can we obtain a similar expression when D is even?
2. Is F(n,D) always even?

Given a sequence A, let A denote the subset of sequences for which the distance, d,
between A and the sequences satisfies 0 < d < %. (For example, if n = 7,D = 3,
then for a sequence A say 0000000, A = 0000000, 0000001, 0000010, ..., 1000000.)

Clearly,
D1
_ 2 n
=0
Suppose Tp has m elements, Aq, Ay, ..., A,,, and consider their associated subsets
A Ay A

We shall now prove that no two of these subsets overlap, for if a sequence B were
to belong to both A; and A;, changing not more than D2_1 places in A; would give
B and changing not more than % places in B gives A;, and hence the distance
between A; and A; would not exceed D — 1, a contradiction since A; and A; belong

to TD.

Hence we have

£
=0 t
or
2n
Fn,D)=m < | —55——
vido (1)

(i) F(5,3) < 5. We will prove that F(5,3) = 4. Indeed, we may assume without
loss of generality that 00000 is in the desired subset, for if it is not, we can then
select an arbitrary sequence, say 10100 from the subset and interchange the 1’s to
0’s, and suitably interchanging the corresponding respective positions of the other
sequences in the subset. So say 00000 is in the desired subset. Let us consider the
sequences that are of at least distance 3 from it. They are namely {11100, 11010,
11001, 10110, 10101, 10011, 01110, 01101, 01011, 00111}, {11110, 11101, 11011,
10111, 01111}, {11111}. Notice that if 11111 is also in the subset, we cannot ac-
commodate any other sequences. Also, since the distance between any two elements
in the second subset is 2, we can at most accommodate one such sequence in our
subset. Similarly, the distance between any two elements in the first subset is either
2 or 4. A direct check reveals we can at most accommodate two such sequences in
our desired subset, and hence F(5,3) < 4. But {00000,01011, 11100, 10111} is such
a 4 element subset and hence F(5,3) = 4.

(ii) F(7,3) < 16. This is a bit easier with the aid of the Fano Plane. The following
illustration isn’t entirely accurate, and more accurate representations can be found
on the Internet. Here is the weblink:
http://mathworld.wolfram.com/FanoPlane.html

Just try to understand what they are saying, and you can probably also work out
why such a configuration works for the (7,3) case.



If we assign a value 1, 2, ..., 7 to each of the 7 vertices (the 3 vertices of the triangles,

the midpoints of the 3 sides and the centroid) of the 75 configuration, say counter-

clockwise from the top vertex, with the centroid assigned 7, then we can obtain the

incidence matrix from 0000000. Each line contains three of the numbers 1, 2, ..., 7,

and all we need to do is to put 1’s in these places and 0’s everywhere else (consider

2,4, 6 to be a straight line):

[ 0000000 ]
1110000
0011100
1000110
1001001
0010011
0100101
0101010

This set contributes 8 sequences to our desired subset, and for the remaining 8
members, we can use the complements of these, that is the sequences obtained by
interchanging the 0’s and 1’s.

1111111
0001111
1100011
0111001
0110110
1101100
1011010
1010101

Denote the first set by X and the second set by Y. The distance between 2 members
of Y is hence automatically 3 or 4, as the distance between their antecedents is 3 or

4; the only question is whether some member of X is closer than 3 to some member
of Y. One can either go about verifying these 16 elements satisfies our condition by
checking each member of X with each member of Y and be done with it, or make
the following observation.

The complementary pair P = 0000000 and P’ = 1111111 are best considered sepa-
rately. Since each member of YV has at least 4 1’s, the distance from P to a member
of Y is at least 4; similarly P’ is at least a distance 4 from any member of X. Also,
the distance between any sequence and its complement is 7, and so it remains only
to check the distance between a member A of {X — P} and a sequence B from
{Y — P’} which is not the complement of A.

A direct check reveals that the distance between A and any other member of its own
section {X — P} is always exactly 4. Similarly, for any two members of {Y — P'}.
Now consider the complement A" of A. A’ belongs to Y, and we have just noted



that B' agrees with A" in exactly 3 places u,v,w. Since all the places in A" need
reversing to give A, then A must differ from B in exactly these three places u, v, w
and the solution is complete.

For n > 2, let h(z) = 2" ' + ...+ 2 + 1 and let
f(z) = agn 2" 4+ . 4 arx + ao

be a degree (2n — 1) polynomial. First we claim that f(x) is divisible by A(z) if and
only if

U2p—1 + Qp1 = G2p—2 + Ap_2 = ... = Gy, + ag.
For 1 < i < n —1, let w; be the distinct nth roots of unity other than 1. Since
h(x)(x — ) = 2" — 1, the w; are the roots to h(x). So h(x)|f(x) if and only if
flw;) =0 for all w;. Let

g(z) = (az,-1 + Cln—1)=’1?n_1 + (azn—2 + Gn—z)l'n_Q + oo+ (an + ao).

2n—1 -1 2n—2 n—2

Since w! = 1, we have w; = w ", w; = w7, ..., and w! w?. Then

g(w;) = f( ;) for all 7, so h( ) divides f(x) if and only if it divides g(x). But this

occurs if and only if
U2p—1 + Qp1 = G2p—2 + Ap_2 = ... = Gy, + ag.

as claimed.

Suppose that there are N sets of n pairs of distinct integers from 1,2, ....2m such
that the n pairs have the same sum. In any set, the pairs are disjoint since the
numbers in each pair have the same sum. Then there are N sets to choose from and
n! ways to choose which pairs from the set correspond to which pairs (a;, a;—,). Also
for each of the n pairs, there are 2 ways to assign the values. Therefore, there are a
total of 2"n!N such polynomials. Now it suffices to show that

(1))

Let S ={1,2,....,2m}. For a positive integer k < 2m, there are [(k — 1)/2] pairs of
distinct integers from S that add up to k; the k—1 pairs (1,k—1),(2,k—2),...,(k—
1, k) count each pair twice as well as a possible (k/2, k/2) pair. If 4m > k > 2m,
then there are |(4m — k + 1)/2| pairs of distinct integers that add up to k by a
similar argument. As k ranges from 3 =1 4+ 2 to 4m — 1 = (2m — 1) 4+ 2m, the
number of pairs of distinct integers that add up to &k are

1,1,2,2

Y b

2,2,1, 1.

m—Im—-1mm-1m-—1,....2,2,1,

Now a set of n pairs of distinct integers from 1,2, ..., 2m that share the same sum is
simply a set of n pairs of the |(k —1)/2] or |(4m — k + 1)/2] pairs above. So the
number of such sets is equal to

(o) +20) £ (0) +2(3) +2(0)
() =) () () - (0)
= (1) o).

and this completes our proof.



3 Extra questions:
1. Show that for n > 3, the maximum possible number of MPs who are satisfied
with their salaries M satisfies the following inequality: M < L%J
2. Can we exhibit such a seating? I think we have to consider modulo 4.

We shall show that at most 72 MP’s are content with their salaries. Let us repre-
sent the members of parliament with a square grid of 10x10 points, and label each
point with the salary of the corresponding MP. Let us draw arrows between neigh-
bouring points such that the arrow is directed from the smaller to the larger number.

Then let a@ be the number of satisfied MP’s sitting in the corners, b the number of
those sitting at the sides of the square, and ¢ the number of those sitting inside.

The number of arrows is 180. There is at most one arrow originating at any satisfied
MP, and there will be at least one point where no arrow originates, the MP with
the largest salary (obviously satisfied). Hence the number of arrows originating at
satisfied MP’s is at most a + 6+ ¢ — 1.

There are at most (4 — )2 arrows from the 4 — a dissatisfied MP’s in the corners,
at most (32 — b)3 from the 32 — b dissatisfied MP’s along the sides, and at most
(64 — ¢)4 from those (64 — ¢) sitting inside. The total number of arrows is thus

180<(a+b+c—1)+(4—a)2+(32—-0)34 (64 —c)4

that is, @ + 204+ 3¢ < 179 The one with the lowest salary out of the 36 MP’s around
the circumference is necessarily dissatisfied, thus a + b < 35. It is also obvious that
a < 4. By adding the inequalities, we have

a+b+c)=(a+2b+3¢c)+ (a+b)+a <1794 35+ 4 = 218.

That is, a4+b+c < 72. Hence, the number of satisfied MP’s cannot be greater than 72.

The diagram shows the case when there are exactly 72 MP’s who are content with
their salaries. Sorry guys, [ can’t draw a really nice one so I just represent it by the
following arrays of numbers, with 1 being the one with the smallest salary. Those
that are dissatisfied are from 1 - 28.
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4 Extra question:
1. Can we do use the same argument for other inequalities involving these symmetric
polynomials? Essentially this method provides us with an alternative transformation
of variables.



Consider the polynomial

flz)= (2 —a1)(x — az)..(x — a,)

Then f(x) has n positive real (not necessarily distinct) roots. Therefore f'(x) has
(n — 1) positive real (not necessarily distinct) roots. Denote them by by, by, ..., b,—1.

Now

flz)=2a" — (Z ai)x”_l + (Z aiaj)x”_Q + ... ) 1 Z I;Ia] z+ ( HaZ

=1
Hence
fle)=na" = (n=1)(Q_a)a" " +(n—2)(_ aay)e" 7 + ..+ (=) Q] [T ayn)
1=1 j#1¢
Now comparing the coefficients (by Vieta’s Theorem) we have

>y Hj;éi a;

n

ble---bn—l —

and

S biby = =

Then by the AM > G'M inequality we have

%b% e e e A

2

Substituting back for the a/sand rearranging we obtain

n—1 Ez 1 H];éz a] \/2 Zl<2<]<na a;
V (n—1)

When n = 2, we get the reverse of the AM < G'M inequality, hence n = 2 does
not work. (as differentiating a polynomial of degree 2 with leave us with a linear
factor from which our argument does not include.) Equality holds for all n > 3, with

equality for all a¢; when n = 3 and when a1 = a3 = ... = a,Vn > 4.

5 (a) Observe that

fl@) = (@ +2)" +1

= z 1211 = (:1;2—|—:1;—|—1)2n(m0d2);

Since x? + x + 1 is ireeducible in 7 [z], if f(«) does factor into two nonconstant
factors p and ¢, then we may assume without loss of generality that

plx) = (:1;2 + o+ 1)2n_1+2 = 2"t P + 1(mod?2),

277,—1

q(z) = (:1;2 +z+1) 2= g g2z + 1(mod2).

Thus, if we write
plx) = agny. 2t TE 4+ a, q(z) = byn_g. 0¥ 7 4 L+ b,

then agnqg., Gon-14,, a0, ban_g.,byn—1__, by are odd and all the other coefficients
are even. Since [ is monic, we may assume without loss of generality that
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dgnto, = banyo, = 1; also agby = f(0) = 1, but f as no real roots (since f > 0
for all n > 1), hence ag > 0,bp > 0 and ag = by = 1. Now expanding pg and
taking (mod 2), we have

Gonyo, = Uongon—14, = don-14, = b?"—?z = b?"-l—?"_l—z = b?"_l—z = O(mOdQ)

Since each of the terms are odd, such a relation can only hold when 2 of the
terms are equivalent. Now suppose z > 0. Let us consider the term agnys..

Clearly,

2" 422 > 2" 2 2 422 > 2" — 22,27 4 22 > 2" — o
and if 2" + 2z = 27 4+ 2771 — 2 then we have 27! = 3z, which is impossible. So
we must have 27 +2z = 2" +2""1 L > or equivalently, z = 277!, But if z = 2771,

then we obtain the trivial factorization of f, which is not what we desire. Hence
g =0 and f must factor into two polynomials of degree 2" each.

Alternatively, note that f(x) = g(h(z)), where h(x) = 2% +z and g(y) = y*" +1.
Since
N N 2" -1 9gn L
gly+ D)=+ +1=y" + (Z (k)y ) +2,
k=1
and (zn) is even for 1 < k < 2" — 1, ¢ is irreducible by Eisenstein’s criterion.

k
Now let p be a nonconstant factor of f, and let r be a root of p. Then g(h(r)) =

f(r) = 0. Hence s = h(r) is a root of ¢g. Since s = r? +r € Q(r), we have
Q(s) C Q(r), so

degp > [Q(r) : Q] > [Q(s) : Q] = degg = 2".

Thus every factor of f has degree at least 2. Therefore if f is reducible, we can
write f(x) = p(a)q(x) where p and ¢ have degree 2".

As above,

fl@) = (@ +2)" +1

= z 1211 = (:1;2—|—:1;—|—1)2n(m0d2);

since x% + & + 1 is irreducible in Z, [x], by unique factorization we must have

277,—1

plx) =q(z) = (:1;2 +z+1) =221 2 + 1(mod2).

Thus, if we write
p(x) = aga” 4+ ..+ ag, () = byna®" + ...+ bo,

then agn, agn—-1, ag, ban, ban-1,by are odd and all the other coefficients are even.
Since f is monic, we may assume without loss of generality that agn = bon = 1;
also agby = f(0) = 1, but f as no real roots (since f ; 0 for all n ; 1), hence
ag > 0,bp > 0 and ag = by = 1. Therefore,

({27 )+ 27 D(g(a)h(x)
= ( i: aibzn+2n—1_i) + (22 aib2"—1—i)

p=2n—1 =0
= GanQn—l + don—1 an + Clonn—l + don—1 bo
2(@271—1 —|— an—l)
=  0O(mod4)



as agn-1 + byn—1 1s even. But

2y N0 = () =20 )

2n—1 2n—1

and ( 2ol ) is odd by Lucas’s Theorem, so

2n—1-1

({7} 4 27 )(f(2)) = 2(modd)

a contradiction. Hence f is irreducible.

A polynomial f(x) € Z[x] factors into a product of two polynomials of lower
degrees in Q [z] if and only if it has such a factorization with polynomials of the
same degrees in Z [z].

Proof: Consider f(z) € Q|[x], let

flo) = 248t 42 g b€ Tb £ 0
by Iy by,
1 " ;
- LS
biby.by 22 1

.
= —(co+ecx+...cpx”)rs,¢ €Z
s

where r = ged(a; [Tgz), 5 = boby...b,, and ged(co, ¢y, ...y ) = 1.

Hence f(x) = ¢f*(x), where ¢ € Q and f*(x) € Z [z]. Let us call f*(x) a primi-
tive polynomial.

Lemma:

The product of two primitive polynomials is again a primitive polynomial.
Proof:

Let g(«),h(x) € Z [x] be primitive polynomials. Let

g(x) =ap+ a1z + ...aza”
h(x) = by + biz + ...bx™
g(x)h(z) = co+ 1z + oo + ™™

Since g(x) and h(x) are primitive polynomials, there exists a prime p such that
p does not divide all the coefficients of g(«) and h(x). Let a; and b; be the first
coefficients of ¢g(x) and h(x) not divisible by p. Then

Cl]‘b]‘ = Ciyj — (aobH_]‘ + ...+ ai_lbﬂ_l + ai+1b]‘_1 + ...+ CLH_]‘Z)O).
Since p|(agbiy; + ... + @i—1bj41), pl(aip1bj—1 + ... + @iy ;b0), we have
pl(aobiy; + ... + ai—1bjy1 + aiprbj—1 + ...+ aijbo).

Suppose plciy;, then we must have p|a;b;, which is a contradiction. Hence p
does not divide a;b; and we are done.

Now write f(x) = ¢f*(x), and suppose that f(z) = g(x)h(x), with g(z), h(z) €
Q [z]. Also, we can write g(x) = ag*(x),h(x) = bh*(x), where a,b € Q and
g*(x), h*(x) are primitive. Then we have

[(z) = c[*(x) = abg™(x)h"(z)

7



Let ab = %, with ged(u,v) = 1, u,v € Z,v > 0. Then vef*(x) = ug*(x)h* (),
and since the product of two primitive polynomials is also primitive, ¢*(x)h*(x)
is primitive. It follows that v|u, but since ged(u,v) = 1, v > 0 that we must have
v =1. Then f(x) = cf*(x) = [ug*(«)] [A*(x)], and this completes the proof.

Theorems

1. Eisenstein’s Criterion:
Let p € Z be a prime. Suppose that f(z) = a,2" + ... + ao is in Z [z], and a, # 0
(mod p), but a¢; = 0 (mod p) for all ¢ < n, with ag # 0 (mod p). Then f(x) is

irreducible over ().

2. Lucas’s Theorem:
Let p be a prime. Let a and b be two positive integers such that

a = app® + ap_1p" M+ A arp + ao,

b= bkpk + bk—lpk_l + ...+ bip + b,

where 0 < a;,b; < p are integers, then
a ar ap_1 aq do
= d p).
()= () G- G2) ) oo
Ok, as a bonus question... haha this one is evil...

For a natural number k, let p(k) denote the smallest prime number which does not
divide k. If p(k) > 2, define ¢(k) to be the product of all primes less than p(k),
otherwise let ¢(k) = 1. Consider the sequence

2o =li2,41 = :Iinp(:lin)vn =0,1,2,..

q(n)
Determine all integers n such that x,, = 2003.

I have mentioned to a couple of you about this... , those who know what is the idea
behind this sequence, establish the claim that I told you.

Here’s another of my original creations, and it illustrates this fact: That a polyno-
mial which can be factorised modulo p for all primes p need not be factorisable over
the rationals. However, the converse is true, that if a polynomial is reducible over
the rationals, then it must be reducible modulo p.

Given any integer m > 2, with m = 2 (mod 4), can the polynomial
flz) = a2t —ma? 41

be expressed as a product of two nonconstant polynomials with

(i) rational coefficients?
(ii) coefficients from {0, 1, ..., p—1}, and where addition and multiplication are carried
out modulo p, for every prime p?

Enjoy!



