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1 (Russia) Find all infinite bounded sequences ay, az, ... of positive integers such that
for all n > 2,

Gp—1 —I' Up—2
ayp =

a ng(an—lv an—Z) ‘

Solution

The only sequence is 2, 2, 2, ... , which clearly satisfies the given condition.

Let ¢, = ged(an, any1). Then g,41 divides both a,41 and a9, so it divides ¢, a,42 —
ap11 = a, as well. Thus ¢,11 divides both a, and a,41, and it divides their greatest
common divisor ¢,.

Thus, the ¢g; form a nonincreasing sequence of positive integers and eventually equal
to some positive constant ¢. At this point, the a; satisfy the recursion

gay = dp_q1 + Qp_2.

Itg=1,thena, =a,_1+a,_2 > a,_1, so the sequence is increasing and unbounded.
It g > 3, then

ap—1 —I' Up—2 ap—1 —I' Up—2
a, = < < max(@p_1,0n-2),

g 2

Similarly, a,11 < max(an—1,a,) < max(d,—2,d,—1), so that
max(dy,, Gny1) < Max(@y_2, Gp_1).

Therefore the maximum values of successive pairs of terms form an infinite decreasing
sequence of positive integers, a contradiction.

Thus ¢ = 2 and eventually we have 2a,, = a,,_1+a,_3 or a,—a,_1 = —%(Gn—1 —dp—2).
This implies that a; — a;_1 converges to 0 and that the a; are eventually constant as
well. From 2a,, = a,,_1 + a,_2, this constant must be 2.

Now if a,, = apq1 = 2 for n > 1, then ged(ay—1,a,) = ged(an—1,2) either equals 1 or

2. Now
Up—1 + Gy

ged(an—1,2)’
implying that either a,_y = 0, which is impossible, or that a,,_; = 2. Thus, all the

2= Upy1 =

a; equal 2, as claimed.



2 (Russia) Four natural numbers have the property that the square of the sum of any
two of the numbers is divisible by the product of the other two. Show that at least
three of the four numbers are equal.

Solution

Suppose, by the way of contradiction, four such numbers exist with no three of them
equal. Select such numbers a, b, ¢, d such that a + b+ ¢+ d is minimal. If some prime
p divided both a and b, then from a|(b+ ¢)? and a|(b+ d)? we know that p divides ¢
and d as well. Then %, ]%, ]9),% is a counterexample with smaller sum. Therefore the
4 numbers are pairwise relatively prime.

Suppose that some prime p > 2 divided a. Because a divides each of (b+ ¢)?, (¢ +
d)?,(d+ b)?, we know that p divides b+ ¢, c+d,d + b. Hence p divides (b+ ¢) + (¢ +
d)+ (d+b) and thus p|(b+ ¢+ d). Therefore p|(b+ c+d) — (b+¢) = d, and similarly
ple and plb, giving a contradiction.

Thus each of a,b,¢,d are powers of 2. Because they are pairwise relatively prime,

three of them must equal 1, a contradiction.



3 (Iran) Let I be the incenter of triangle ABC and let Al meet the circumcircle of
ABC at D. Denote the feet of the perpendiculars from [ to BD and C'D by F and
F, respectively. If IE + IF = 22 calculate LBAC.

2
Solution
Fact: DB = DI = DC. In fact /BDI = LC gives LDIB = (LA + LB)/2 while

LIBD = (LA+ £B)/2. Thus DB = DI and similarly DC = DI.
lLet 0 = /BAD. Then

1 1
[ID-AD = SID-(IE+IF)

4

1 1

— §BD-]E—I—§CD-]F

= AreaBID + AreaDIC
1D

= E(AreaBAD + AreaD AC)
1

whence —22_ — 94in#.

AB+AC
Let X be the point on the ray AB different from A such that DX = DA. Because

(XBD =/(DCA and /DBX = (XAD = /DAC, we have AXBD ~ ANACD, and
BX = AC. Then

AD AD  AD 1
AB+ AC  AB+BX AX  2cosf’

2sinf =

so that 2sinflcosf = %, and /BAC = 20 = 30° or 150°.



4 (Italy) Let X be a set with | X| = n, and let Ay, Az, ..., A, be subsets of X such
that
(a) |A;| =3 fori=1,2,...,m.
(b) |A; N A;] <1 for all ¢ # 5.

Prove that there exists a subset of X with at least |v/2n| elements, which does not
contain A; for v =1,2,...,m.
Solution
Let A be a subset of X containing no A;, and having the maximum number of
elements subject to this condition. Let & be the size of A. By assumption, for each
€ X — A, there exists o(z) € 1,2,...,m such that A;,) € AU {z}.
Let L, = AN Ay, which by the previous observation must have 2 elements. Because
|A; N Aj| <1 forall ¢ # j., the L, must be all distinct. Now there are (g) 2-element
subsets of A, so there can be at most (g) sets Ly. Thusn —k < (g) or k2 +k > 2n.
It follows that

k>

(=1 4++V1+8n)>Vv2n—1,

[N

that is, k > |v2n].



5 (Russia) Each square of an infinite grid is coloured in one of 5 colours, in such a
way that every 5-square (Greek) cross contains one square of each colour. Show that
every 1 x 5 rectangle also contains one square of each colour.

Note: The five colours of the Greek cross are maroon, lavender, tickeme-pink, green
and neon orange.

Solution

Label the centers of the grid squares with coordinates, and suppose that square (0,
0) is coloured maroon. The Greek cross centered at (1, 1) must contain a maroon-
coloured square. However, the squares (0, 1), (1, 0) and (1,1) cannot be maroon
because each of the squares is in a Greek croos with (0, 0). Thus either (1, 2) or (2,
1) is maroon, WLOG, sat (1,2).

Then by a similar analysis on square (1,2) and the Greek cross centered at (2, 1),
one of the squares (2, 0) and (3, 1) must be maroon. (2, 0) is in a Greek cross with
(0, 0) though, so (3, 1) is maroon.

Repeating the analysis on square (2, 0) shows that (2, -1) is maroon. Spreading
outward, every square of the form (¢ 4+ 2j,7 — 25) is maroon. Because the squares
are the centers of Greek crosses that tile the plane, no other squares can be maroon;
because no two of these squares are in the same 1 x 5 rectangle, no two maroon
squares can be in the same 1 x 5 rectangle.

The same argument applies to all the other colours. And thus the five squares in the
1 x 5 rectangle have distinct colours, as desired.



6 (IMC) Let a be a real number such that 1 < a < 2.

(a) Show that o has a unique representation as an infinite product
()

o= — .

=1 LB
where each n; is a positive integer satisfying

2
n; < ngq.

(b) Show that « is rational if and only if its infinite product has the following

property:
For some m and all £ > m,

2
Solution

(a) We construct inductively the sequence {n;} and the ratios

>
I (1+3)

so that 8, > 1 for all £&. Choose nj to be the least n such that

0, =

1
14+ — <04
n

(0o = «) such that for each £,

1
14+ — <01, <1+ .
. nk—l

Hence .

nkl__lzl—l—

ng

1 0i_
<0, = k11 <
N1 1+E 14

1

5 .
nyg —1

I+

Thus for each k, ngy1 > ni. Since ny > 2, ny — oo so that 6, — 1. Hence
()
o= — .
=1 U
The uniqueness of the infinite product will follow from the fact that every step

ny has to be determined by (1). Indeed, if for some &k we have

1
1‘|’_ Zek—lv

ng

then 6, < 1,0,11 < 1 and hence {0;} does not converge to 1.
Now observe that for M > 1,

(14 2) (14 55) (14 35) - = bt Tt o = Lo @)
M e VYA VIR VERI VEREE N VS

Assume that for some k& we have

1

nge —

1 < Gy
‘I’ 1 k-1,



then we get

« B Orp—1
+ 1) (142 O+ (142
(14 %) (14 5) (1) (1+55)
< Or—1
_(1+;—k)(1+%)...
=
1+mj_1>1’

a contradiction.

From (2) « is rational if its product ends in the stated way.

Conversely, suppose « is the rational number 2—7. Our aim is to show that for

some m,
Nm

0,1 = .
! Ny — 1

Suppose this is not the case, so that for every m,

Nm

(3)

0.1 < .
! Ny — 1

For each k we write 6, = 2% as a fraction (not necessarily in the lowest terms)
where py = p, ¢o = ¢, and in general

Pk = Pr—1Mky Gk = qe—1(ng +1).

The numbers pr — g are positive integers, hence to obtain a contradiction it
suffices to show that this sequence is strictly decreasing. Now,

P — gk — (Po—1 — qe—1) = nppr—1 — (e + 1)geo1 — pr—1 + @
= (g — 1)pp—1 — npra

and this is negative since

ng

Pk—1 — 0, <
Gr—1 ng — 1

by inequality (3). Hence we are done.



7 (Russia) An n by n square is drawn on an infinite checkerboard. Each of the n?

cells contained in the square initially contains a token. A move consists of jumping
a taken over an adjacent token (horizontally or vertically) into an empty square; the
token jumped over is removed. A sequence of moves is carried out in such a way
that at the end, no further moves are possible.

(a)
(b)

Show that when n is even, at least ”3—2 moves have been made.

Does the result still hold when n is odd?

Solution

(a)

At the end of the game no two adjacent squares contain tokens. Otherwise
(because no more jumps are possible) they would have to be in an infinitely
long line of tokens, which is a contradiction.

During the game, each time a token on square A jumps over another token
on square B, imagine putting a 1 x 2 domino over squares A and B. At the
end, every tokenless square on the checkerboard is covered by a tile, so no two
uncovered squares are adjacent.

Now split the n? squares of the board into 2 x 2 mini boards, each containing
4 overlapping 1 x 2 tiles. At the end of the game, none of these n? tiles can
contain 2 checkers (since no 2 checkers are adjacent at the end of the game).
A2ny jump removes a checker from at most three full tiles, implying that at least

- moves must have taken place.

Lemma If an n X n square board is covered with 1 x 2 rectangular dominoes
(possibly overlapping, and possibly with one square off the board) in such a way
that no two uncovered squares are adjacent, then at least ”3—2 tiles are on the
board.

Proof : Call a pair of adjacent squares on the checkerboard a tile. If a tile
contains two squares on the border of the checkerboard, call it an outer tile.
Otherwise, call it an inner tile.

Now for each domino D, consider any tile it partly covers. If this tile is partly
covered by exactly m dominoes, we say that D destroys % of the tile. Summing
over all the tiles that D lies on, we find the total quantity a of outer tiles
destroyed by D, and the total quantity b of inner tiles destroyed by D. We than
say D scores 1.5a 4 b points.

Consider the vertical domino D consisting of the upper-left square in the chess-
board and the square immediately below it. It partly destroys two horizontal
tiles. One of the two squares immediately to D’s right must be covered, so if D
destroys all of one horizontal tile, it can only destroy at most half of the other.
With this analysis, some quick checking shows that any domino scores at most
6 points. Also, it can be verified that any domino scoring 6 points (i) lies
completely on the board; (ii) does not contain a corner square of the chessboard;
(iii) does not overlap with any other dominoes; and (iv) does not have either
length-1 edge border any other domino.

In a valid arrangement of dominoes, every tile is destroyed completely. Because
there are 4(n — 1) outer tiles and 2(n — 1)(n — 2) inner tiles, this means that a
total of 1.5(4)(n —1)42(n —1)(n —2) = 2(n* — 1) points are scored. Therefore,

there must be at least
2(n* —1) n?—1

S =

]

dominoes.



n’—1

Suppose, by way of contradiction, that we have exactly dominoes. For
this to be an integer, n must not be divisible by 3. In addition, the restrictions
described earlier must hold for every domino.

Suppose we have any horizontal domino not at the bottom of the chessboard.
One of the two squares directly below it must be covered. To satisfy our restric-
tions, this square must be covered by a horizontal domino (not a vertical one).
Thus we can find a chain of horizontal dominoes stretching to the bottom of the
board. Similarly, we can follow this chain to the top of the board.

Likewise, if there is any vertical domino then some chain of vertical dominoes
streches across the board. However, we cannot have both a horizontal and a
vertical chain that do not overlap, so all the dominoes must have the same
orientation: WLOG, suppose they are all horizontal.

To cover the tiles in any given row while satisfying the restrictions, we must
alternate between blank squares and horizontal dominoes. In the top row, be-
cause no dominoes contain corner squares, we must start and end with blank
squares. Thus n = 1 (mod 3). Then in the second row, we must start with a
horizontal domino (to cover the top-left vertical tiles). After alternating between
dominoes and blank squares, the end of the row will contain two blank squares,
a contradiction. Thus it is impossible to cover the chessboard with exactly -1

. . 2 .
dominoes, and indeed at least %- dominoes are needed.



8 (Japan) For a convex hexagon ABCDFEF whose side lengths are all 1, let M and
m be the maximum and minimum values of the three diagonals AD, BFE and CF.
Find all possible values of m and M.

Solution

We claim that v3 < M <3 and 1 <m < 2.

First, we show all such values are attainable. Continuously transform ABCDEF
from an equilateral triangle ACE of side length 2, into a regular hexagon of side
length 1, and finally into a segment of length 3 (for instance, by enlarging the diag-
onal AD of the regular hexagon while bringing B, C, E, F' closer to line AD.) Then
M continuously varies from /3 to 2 to 3. Similarly, by continuously transform-
ing ABCDFEF from a lz2 rectangle into a regular hexagon, we can make m vary
continuously from 1 to 2.

Now we prove no other values are attainable. First, we have AD < AB+BC+CD =
3 and similarly, BE,C'F < 3 so that M < 3.

Next suppose, by way of contradiction, that m < 1 and assume WLOG that AD < 1.
Because AD < AB=BC=CD =1,

[DCA < [DAC, LABD < LADB,

LCBD =(CDB,/BCA=/(BAC.
Therefore,

LCDA+ (BAD = (CDB+ (BDA+ [(BAC + (CAD
> [CBD+ /DBA+ (BCA+ LACD
= (CBA+ (BCA.

Consequently, ZCDA+ /BAD > 180° and likewise ZEDA + (FAD > 180°. Then
LCDE 4+ [BAF = [CDA+ (EDA+ (BAD + (FAD > 360°,

which is impossible since ABC'DFEF is convex. Hence m > 1.

Next we demonstrate that M > /3 and m < 2. Because the sum of the six interior
angles on ABCDFEF is 720°, some pair of adjacent angles has sum greater than or
equal to 240° and some pair has sum less than or equal to 240°. Thus it suffices to

prove that CF' > /3 when LA+ /B > 240°, and that C'I' < 2 when LA+ /B < 240°.

By the law of cosines,
CF? = BC? + BF?* —2BC - BFcos/FBC.

Thus if we fix A, B, F' and decrease ZABC', we decrease /F BC and C'F. Similarly,
by fixing A, B, and decreasing /BAF, we decrease C'F. Therefore, it suffices to
prove that CF <2 when /A 4 /B = 240°.

Now suppose that /A + /B does equal 240°. Let lines AF and BC intersect at P,
and set x = PA and y = PB. Because /A + /B = 240°, /P = 60°. Then applying
the law of cosines to triangles PAB and PC'F' yields

1:AB2:$2—|—y2—$y

and
CFP=(c+ 1P+ @+ 1) ==+ D)y+1)=2+z+y.

Therefore, we need only find the possible values of x + 4 given that z? + y* —ay = 1
and x,y > 0. These conditions imply that

(x+y)’+3x—y)l=42+y>0,

10



and |z — y| < + y. Hence,

1 3
L= 1(1’+y)2+1($—y)2
< (e4y)<(z+y)’+3x—y)’ =4,

sol <x+4+y <2 and V3 < CF <2. This completes the proof.
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