Important!

- 1. Please submit all hand-written solutions to me by 1 June 2002 as I would be leaving for France for one month after that.
- 2. You can still continue to submit your solutions to me by email (asteea@singnet.com.sg) when I am in France (that's assuming I have Internet access in the town of Besancon)
- 3. Nopes, I am not that rich, I cannot afford so many books, so what I will do instead is I will get some stuff from France and Europe for those complete solutions given to me.
- 4. If no complete solution is received, then I'll just give it to the one who's closest, to encourage all of you to write your proofs down (if it helps at all...)
 - 1 There are 99 space stations. Each pair of space stations is connected by a tunnel. There are 99 two-way tunnels, and all the other tunnels are strictly one-way tunnels. A group of 4 space stations is called **connected** if one can reach each station in the group from every other station in the group without using any tunnels other than the 6 tunnels which connect them. Determine the maximum number of connected groups.
 - 2 Let ABC be a triangle and let ω be a circle passing through A and C. Sides AB and BC meet ω again at D and E, respectively. Let γ be the incircle of the **circular** triangle EBD and let S be its center. Suppose that γ touches the arc DE at M. Prove that the angle bisector of $\angle AMC$ passes through the incenter of triangle ABC.
 - **3** Consider all numbers of the form $3n^2 + n + 1$, where n is a positive integer.
 - (a) How small can the sum of the digits (in base 10) of such a number be?
 - (b) Can such a number have the sum of its digits (in base 10) equal to 2002?
 - **4** Define the sequence $\{x_n\}_{n\geq 0}$ by $x_0=0$ and

$$x_n = \begin{cases} x_{n-1} + \frac{3^{r+1}-1}{2} & \text{if } n = 3^r(3k+1), \\ x_{n-1} - \frac{3^{r+1}+1}{2} & \text{if } n = 3^r(3k+2), \end{cases}$$

where k and r are nonnegative integers. Prove that every integer appears exactly once in the sequence.